Need Assistance?
  • US & Canada:
    +
  • UK: +

123C4

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

123C4 is an effective, selective and competitive receptor tyrosine kinase EPHA4 agonist with a Ki value of 0.65 μM.

Category
Peptide Inhibitors
Catalog number
BAT-009155
CAS number
2034159-30-1
Molecular Formula
C43H47ClN8O6
Molecular Weight
807.34
IUPAC Name
4-amino-N-[(2S)-1-[[(2S)-3-(4-chlorophenyl)-1-[[(2S)-1-[2-(5-methoxy-1H-indol-3-yl)ethylamino]-1-oxo-3-pyridin-4-ylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(5-hydroxy-1H-indol-3-yl)-1-oxopropan-2-yl]butanamide
Synonyms
4-amino-N-((S)-1-(((S)-3-(4-chlorophenyl)-1-(((S)-1-((2-(5-methoxy-1H-indol-3-yl)ethyl)amino)-1-oxo-3-(pyridin-4-yl)propan-2-yl)amino)-1-oxopropan-2-yl)amino)-3-(5-hydroxy-1H-indol-3-yl)-1-oxopropan-2-yl)butanamide
Appearance
Powder
Purity
≥98%
Storage
Store in a cool and dry place and at 2-8°C for short term (days to weeks) or store at -20°C for long term (months to years)
Solubility
Soluble in DMSO
InChI
InChI=1S/C43H47ClN8O6/c1-58-32-9-11-36-34(23-32)28(24-48-36)14-18-47-41(55)37(20-27-12-16-46-17-13-27)51-42(56)38(19-26-4-6-30(44)7-5-26)52-43(57)39(50-40(54)3-2-15-45)21-29-25-49-35-10-8-31(53)22-33(29)35/h4-13,16-17,22-25,37-39,48-49,53H,2-3,14-15,18-21,45H2,1H3,(H,47,55)(H,50,54)(H,51,56)(H,52,57)/t37-,38-,39-/m0/s1
InChI Key
SRCCZHZOKZJHOK-IGMOWHQGSA-N
Canonical SMILES
COC1=CC2=C(C=C1)NC=C2CCNC(=O)C(CC3=CC=NC=C3)NC(=O)C(CC4=CC=C(C=C4)Cl)NC(=O)C(CC5=CNC6=C5C=C(C=C6)O)NC(=O)CCCN
1. Potent and Selective EphA4 Agonists for the Treatment of ALS
Bainan Wu, et al. Cell Chem Biol. 2017 Mar 16;24(3):293-305. doi: 10.1016/j.chembiol.2017.01.006. Epub 2017 Feb 9.
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease that affects motor neurons. Recent studies identified the receptor tyrosine kinase EphA4 as a disease-modifying gene that is critical for the progression of motor neuron degeneration. We report on the design and characterization of a family of EphA4 targeting agents that bind to its ligand binding domain with nanomolar affinity. The molecules exhibit excellent selectivity and display efficacy in a SOD1 mutant mouse model of ALS. Interestingly, the molecules appear to act as agonists for the receptor in certain surrogate cellular assays. While the exact mechanisms responsible for the therapeutic effect of the new agonists remain to be elucidated, we believe that the described agent represents both an invaluable pharmacological tool to further decipher the role of the EphA4 in ALS and potentially other human diseases, and a significant stepping stone for the development of novel treatments.
2. Reduction of ephrin-A5 aggravates disease progression in amyotrophic lateral sclerosis
Laura Rué, et al. Acta Neuropathol Commun. 2019 Jul 12;7(1):114. doi: 10.1186/s40478-019-0759-6.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brainstem, spinal cord and motor cortex. ALS is characterized by genetic and clinical heterogeneity, suggesting the existence of genetic factors that modify the phenotypic expression of the disease. We previously identified the axonal guidance EphA4 receptor, member of the Eph-ephrin system, as an ALS disease-modifying factor. EphA4 genetic inhibition rescued the motor neuron phenotype in zebrafish and a rodent model of ALS. Preventing ligands from binding to the EphA4 receptor also successfully improved disease, suggesting a role for EphA4 ligands in ALS. One particular ligand, ephrin-A5, is upregulated in reactive astrocytes after acute neuronal injury and inhibits axonal regeneration. Moreover, it plays a role during development in the correct pathfinding of motor axons towards their target limb muscles. We hypothesized that a constitutive reduction of ephrin-A5 signalling would benefit disease progression in a rodent model for ALS. We discovered that in the spinal cord of control and symptomatic ALS mice ephrin-A5 was predominantly expressed in neurons. Surprisingly, reduction of ephrin-A5 levels in SOD1G93A mice accelerated disease progression and reduced survival without affecting disease onset, motor neuron numbers or innervated neuromuscular junctions in symptomatic mice. These findings suggest ephrin-A5 as a modifier of disease progression that might play a role in the later stages of the disease. Similarly, we identified a more aggressive disease progression in patients with lower ephrin-A5 protein levels in the cerebrospinal fluid without modifying disease onset. In summary, we identified reduced expression of ephrin-A5 to accelerate disease progression in a mouse model of ALS as well as in humans. Combined with our previous findings on the role of EphA4 in ALS our current data suggests different contribution for various members of the Eph-ephrin system in the pathophysiology of a motor neuron disease.
3. Reducing EphA4 before disease onset does not affect survival in a mouse model of Amyotrophic Lateral Sclerosis
Laura Rué, et al. Sci Rep. 2019 Oct 1;9(1):14112. doi: 10.1038/s41598-019-50615-0.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons resulting in severe neurological symptoms. Previous findings of our lab suggested that the axonal guidance tyrosine-kinase receptor EphA4 is an ALS disease-modifying gene. Reduction of EphA4 from developmental stages onwards rescued a motor neuron phenotype in zebrafish, and heterozygous deletion before birth in the SOD1G93A mouse model of ALS resulted in improved survival. Here, we aimed to gain more insights in the cell-specific role of decreasing EphA4 expression in addition to timing and amount of EphA4 reduction. To evaluate the therapeutic potential of lowering EphA4 later in life, we ubiquitously reduced EphA4 levels to 50% in SOD1G93A mice at 60 days of age, which did not modify disease parameters. Even further lowering EphA4 levels ubiquitously or in neurons, did not improve disease onset or survival. These findings suggest that lowering EphA4 as target in ALS may suffer from a complex therapeutic time window. In addition, the complexity of the Eph-ephrin signalling system may also possibly limit the therapeutic potential of such an approach in ALS. We suggest here that a specific EphA4 knockdown in adulthood may have a limited therapeutic potential for ALS.
Online Inquiry
Verification code
Inquiry Basket