2-[(R)-1,2,3,4-Tetrahydroisoquinolin-3-yl]acetic acid hydrochloride
Need Assistance?
  • US & Canada:
    +
  • UK: +

2-[(R)-1,2,3,4-Tetrahydroisoquinolin-3-yl]acetic acid hydrochloride

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Cyclic Amino Acids
Catalog number
BAT-001537
CAS number
332064-61-6
Molecular Formula
C11H14ClNO2
Molecular Weight
227.69
Synonyms
H-D-Tic-OH HCl; (R)-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)acetic acid hydrochloride
Related CAS
187218-03-7 (free base)
Storage
Store at 2-8 °C
1. New route for synthesis of 2-(2,2-dimethoxyethyl)-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3- b]indole and DFT investigation
Nesimi Uludağ, Goncagül Serdaroğlu Heliyon. 2020 Jun 8;6(6):e04105. doi: 10.1016/j.heliyon.2020.e04105. eCollection 2020 Jun.
Development of efficient sequences for the synthesis of the title compound (2-(2,2-dimethoxyethyl)-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3-b]indole) (7) was described. The title compound was synthesized through several steps starting from phenylhydrazine hydrochloride and dimethyl (R)-2-(3-oxocyclohexyl)malonate. In this route, all synthesized compounds were observed by spectroscopic tools (FT-IR, NMR): Methyl-2-(2,3,4,9-1H-carbazol-2-yl)acetate (3), 2-(2,3,4,9-tetrahydro-1H-carbazol-2-yl)acetic acid (4), N-(2,2-dimethoxyethyl)-2-(2,3,4,9-tetrahydro-1H-carbazol-2-yl)acetamide (5), 2-(2,2-dimethoxyethyl)-1,2,4,5,6,7-hexahydro-3H-1,5-methanoazocino[4,3-b]indol-3-one (6), 2-(2,2-dimethoxyethyl)-2,3,4,5,6,7-hexahydro-1H-1,5-methanoazocino[4,3-b]indole (7). The central step in these syntheses is the dehydrogenative reaction, which constructs the tetracyclic ring system from a much simpler tetracyclic precursor. The six-stable conformers of the compound (7) were used for further calculations such as FT-IR, NMR, NLO, and FMO analyses, performed at the B3LYP/6-311++G(d,p) level. This work revealed that (7) can be a good material to use in the non-linear optical material because its β tensor is greater ten times than that of the urea.
2. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes
Chenyun Wang, Cancan Wang, Dan Jin, Yi Yu, Fan Yang, Yulin Zhang, Qunfeng Yao, Guo-Jun Zhang ACS Sens. 2020 Feb 28;5(2):362-369. doi: 10.1021/acssensors.9b01869. Epub 2020 Jan 24.
In this study, we report a gold nanoparticle (AuNP)-amplified surface acoustic wave (SAW) sensor for exosome detection with high sensitivity. The SAW chip was self-assembled with mercapto acetic acid to generate carboxylic groups via the Au-S bond. Anti-CD63 was then anchored onto the chip by pretreatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide,1-hydroxypyrrolidine-2,5-dione (NHS). Due to the existence of a membrane protein, CD63, on the exosome surface, exosomes could be bound onto the antibody-immobilized SAW chip. To amplify the detection signal, both the biotin-conjugated epithelial cell adhesion molecule (EpCAM) antibody as a secondary antibody and AuNP-labeled streptavidin were applied onto the exosome-bound SAW chip, resulting in AuNP assembly on the chip through biotin-avidin recognition. The sensor was capable of detecting 1.1 × 103 particles/mL exosomes, which was about 2 orders of magnitude higher than those detected by the strategy without using signal amplification. The sensor also achieved a satisfactory specificity and could detect the low-abundance exosomes directly in blood samples from cancer patients with minimal disturbance. This makes the SAW sensor useful for early diagnosis of cancer.
3. Antinociceptive effects of flower extracts and the active fraction from Styrax japonicus
Lei He, Ying Zhou, Guangjun Wan, Wencui Wang, Nan Zhang, Lei Yao J Ethnopharmacol. 2022 Feb 10;284:114779. doi: 10.1016/j.jep.2021.114779. Epub 2021 Oct 27.
Ethnopharmacological relevance: Flowers from Styrax japonicus sieb. et Zucc. have been used as a Chinese folk medicine to alleviate pain such as toothache and sore throat. Aim of the study: To testify the analgesic effect of flowers from Styrax japonicus, analyze components of the active fraction, and investigate the mechanism of analgesia. Materials and methods: Flower extracts were obtained by ethanol, petroleum ether and hydrodistillation extraction. Different fractions of ethanol extracts (EE) were isolated by silica gel column chromatography and preparative liquid chromatography. Analgesic effects of EE, petroleum ether extracts (PEE), hydrodistillation extracts (HDE), and fractions of EE were evaluated using hot plate, acetic acid-induced writhing and formalin tests on mice. Components of the active fraction 1 (F1) were determined by the ultrahigh-performance liquid chromatography Q extractive mass spectrometry (UHPLC-QE-MS). Anti-inflammatory and sedative effects involving analgesic mechanisms were evaluated by carrageenan induced hind paw oedema and pentobarbital sodium sleep tests, respectively. In addition, antagonists including naloxone hydrochloride (NXH), flumazenil (FM), SCH23390 (SCH) and WAY100635 (WAY) were used to investigate the possible mechanism of analgesia. Contents of neurotransmitters and relevant metabolites in different brain regions of mice were also quantified by the ultraperformance liquid chromatography with a fluorescence detector (UPLC-FLD). Results: EE rather than PEE and HDE at medium and high doses (150 mg/kg and 300 mg/kg) significantly prolonged the latency time of the response of mice to the thermal stimulation in the hot plate test. Moreover, EE significantly decreased number of writhes in the acetic acid-induced writhing test, and reduced licking time in both two phases of the formalin test in a dose-dependent manner. The F1 (50 mg/kg) showed effective antinociceptive responses in all mice models. However, fraction 2 (F2) and fraction 3 (F3) at 50 mg/kg performed no analgesic action. Kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, pinoresinol-4-O-glucoside, forsythin and arctiin were identified from components of the F1. Furthermore, F1 (50 mg/kg) did not significantly affect hind paw oedema of mice induced by carrageenan but significantly shortened sleep latency and increased sleep duration in the pentobarbital sodium sleep test. In addition, the antinociceptive response of F1 was not affected by NXH in two mice models, but significantly blocked by FM and WAY in the hot plate test. In the formalin test, FM avoided the effect of F1 only in the first phase, while the analgesic activity of F1 was totally suppressed by WAY in both two phases. Otherwise, contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased significantly in hippocampus and striatum of mice in the F1 group. Conclusion: EE from flowers of Styrax japonicus, and F1, the active part isolated from EE, showed significant antinociceptive activities. The analgesic effect of F1 appeared to be related to the sedative effect, partially mediated by the GABAergic system, and highly involved in the serotonergic system. This was the first study confirming the analgesic effect of Styrax japonicus flower, which provided a candidate for the development of non-opioid analgesics.
Online Inquiry
Verification code
Inquiry Basket