(2R)-2-amino-3-methoxy-2-methylpropanoic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

(2R)-2-amino-3-methoxy-2-methylpropanoic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
D-Amino Acids
Catalog number
BAT-008173
Molecular Formula
C5H11NO3
Molecular Weight
133.15
Storage
Store at 2-8°C
1. Synthesis and Biological Evaluation of CF3 Se-Substituted α-Amino Acid Derivatives
Zhou-Zhou Han, Tao Dong, Xiao-Xia Ming, Fu Kuang, Cheng-Pan Zhang ChemMedChem. 2021 Oct 15;16(20):3177-3180. doi: 10.1002/cmdc.202100451. Epub 2021 Jul 22.
Several CF3 Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates (5 a/6 a), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates (5 b/6 b), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates (5 c/6 c), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates (11 a/12 a), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates (11 b/12 b), were readily synthesized from natural amino acids and [Me4 N][SeCF3 ]. The primary in vitro cytotoxicity assays revealed that compounds 6 a, 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3 Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 μM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3 Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.
2. Occurrence of the (2R,3S)-Isomer of 2-Amino-3,4-dihydroxybutanoic Acid in the Mushroom Hypsizygus marmoreus
Tomokazu Ito, et al. J Agric Food Chem. 2017 Aug 2;65(30):6131-6139. doi: 10.1021/acs.jafc.7b01893. Epub 2017 Jul 24.
Here, we report the occurrence of the (2R,3S)-isomer of 2-amino-3,4-dihydroxybutanoic acid (d-ADHB) in the fruiting body of an edible mushroom, Hypsizygus marmoreus. This is an unusual example of the accumulation of a d-amino acid whose enantiomer is not a proteinogenic amino acid. We show that d-ADHB occurs specifically in the mushroom H. marmoreus. Other edible mushrooms examined, including Pholiota microspora, Pleurotus eryngii, Mycena chlorophos, Sparassis crispa, Grifola frondosa, Pleurotus ostreatus, and Flammulina velutipes, do not contain detectable levels of d-ADHB. The concentration of d-ADHB in the fruiting body of H. marmoreus is relatively high (approximately 1.3 mg/g of fruiting body) and is comparable to the concentration of some of the most abundant free proteinogenic amino acids. Quantitative analysis of d-ADHB during fruiting body development demonstrated that the amino acid is synthesized during the fruiting body formation period. The absence of the putative precursors of d-ADHB, the (2S,3S)-isomer of ADHB and 2-oxo-tetronate, and the enzyme activities of d-ADHB racemase (2-epimerase) and transaminase suggested that d-ADHB is synthesized by a unique mechanism in this organism. Our data also suggested that the lack of or low expression of a d-ADHB degradation enzyme is a key determinant of d-ADHB accumulation in H. marmoreus.
3. Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration
Renfei Luo, Shan Hu, Qiaojuan Liu, Mengke Han, Feifei Wang, Miaojuan Qiu, Suchun Li, Xiaosa Li, Tianxin Yang, Xiaodong Fu, Weidong Wang, Chunling Li FASEB J. 2019 Jan;33(1):469-483. doi: 10.1096/fj.201800436R. Epub 2018 Jul 23.
Increasing evidence supports the important role of H2S in renal physiology and the pathogenesis of kidney injury. Whether H2S regulates water metabolism in the kidney and the potential mechanism are still unknown. The present study was conducted to determine the role of H2S in urine concentration. Inhibition of both cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), 2 major enzymes for endogenous H2S production, with propargylglycine (PPG) and amino-oxyacetate (AOAA), respectively, caused increased urine output and reduced urine osmolality in mice that was associated with decreased expression of aquaporin (AQP)-2 in the renal inner medulla. Mice treated with both PPG and AOAA developed a urine concentration defect in response to dehydration that was accompanied by reduced AQP-2 protein expression. Inhibition of CSE alone was associated with a mild decrease in AQP-2 protein level in the renal medulla of heterozygous CBS mice. GYY4137, a slow H2S donor, markedly improved urine concentration and prevented the down-regulation of renal AQP-2 protein expression in mice with lithium-induced nephrogenic diabetes insipidus (NDI). GYY4137 significantly increased cAMP levels in cell lysates prepared from inner medullary collecting duct (IMCD) suspensions. AQP-2 protein expression was also upregulated, but was significantly inhibited by the adenyl cyclase inhibitor MDL12330A or the PKA inhibitor H89, but not the vasopressin 2 receptor (V2R) antagonist tolvaptan. Inhibition of endogenous H2S production impaired urine concentration in mice, whereas an exogenous H2S donor improved urine concentration in lithium-induced NDI by increasing AQP-2 expression in the collecting duct principal cells. H2S upregulated AQP-2 protein expression, probably via the cAMP-PKA pathway.-Luo, R., Hu, S., Liu, Q., Han, M., Wang, F., Qiu, M., Li, S., Li, X., Yang, T., Fu, X., Wang, W., Li, C. Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration.
Online Inquiry
Verification code
Inquiry Basket