3-Iodo-L-phenylalanine
Need Assistance?
  • US & Canada:
    +
  • UK: +

3-Iodo-L-phenylalanine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-006794
CAS number
20846-39-3
Molecular Formula
C9H10INO2
Molecular Weight
291.09
3-Iodo-L-phenylalanine
IUPAC Name
(2S)-2-amino-3-(3-iodophenyl)propanoic acid
Synonyms
H-Phe(3-I)-OH
Appearance
Off-white powder
Purity
≥ 99% (HPLC)
Density
1.824±0.06 g/cm3(Predicted)
Melting Point
>200 °C(dec.)
Boiling Point
388.0±37.0 °C(Predicted)
Storage
Store at 2-8 °C
InChI
InChI=1S/C9H10INO2/c10-7-3-1-2-6(4-7)5-8(11)9(12)13/h1-4,8H,5,11H2,(H,12,13)/t8-/m0/s1
InChI Key
BABTYIKKTLTNRX-QMMMGPOBSA-N
Canonical SMILES
C1=CC(=CC(=C1)I)CC(C(=O)O)N
1. Directed Evolution Pipeline for the Improvement of Orthogonal Translation Machinery for Genetic Code Expansion at Sense Codons
Wil Biddle, David G Schwark, Margaret A Schmitt, John D Fisk Front Chem. 2022 Feb 17;10:815788. doi: 10.3389/fchem.2022.815788. eCollection 2022.
The expansion of the genetic code beyond a single type of noncanonical amino acid (ncAA) is hindered by inefficient machinery for reassigning the meaning of sense codons. A major obstacle to using directed evolution to improve the efficiency of sense codon reassignment is that fractional sense codon reassignments lead to heterogeneous mixtures of full-length proteins with either a ncAA or a natural amino acid incorporated in response to the targeted codon. In stop codon suppression systems, missed incorporations lead to truncated proteins; improvements in activity may be inferred from increased protein yields or the production of downstream reporters. In sense codon reassignment, the heterogeneous proteins produced greatly complicate the development of screens for variants of the orthogonal machinery with improved activity. We describe the use of a previously-reported fluorescence-based screen for sense codon reassignment as the first step in a directed evolution workflow to improve the incorporation of a ncAA in response to the Arg AGG sense codon. We first screened a library with diversity introduced into both the orthogonal Methanocaldococcus jannaschii tyrosyl tRNA anticodon loop and the cognate aminoacyl tRNA synthetase (aaRS) anticodon binding domain for variants that improved incorporation of tyrosine in response to the AGG codon. The most efficient variants produced fluorescent proteins at levels indistinguishable from the E. coli translation machinery decoding tyrosine codons. Mutations to the M. jannaschii aaRS that were found to improve tyrosine incorporation were transplanted onto a M. jannaschii aaRS evolved for the incorporation of para-azidophenylalanine. Improved ncAA incorporation was evident using fluorescence- and mass-based reporters. The described workflow is generalizable and should enable the rapid tailoring of orthogonal machinery capable of activating diverse ncAAs to any sense codon target. We evaluated the selection based improvements of the orthogonal pair in a host genomically engineered for reduced target codon competition. Using this particular system for evaluation of arginine AGG codon reassignment, however, E. coli strains with genomes engineered to remove competing tRNAs did not outperform a standard laboratory E. coli strain in sense codon reassignment.
2. Directed Evolution of the Methanosarcina barkeri Pyrrolysyl tRNA/aminoacyl tRNA Synthetase Pair for Rapid Evaluation of Sense Codon Reassignment Potential
David G Schwark, Margaret A Schmitt, John D Fisk Int J Mol Sci. 2021 Jan 18;22(2):895. doi: 10.3390/ijms22020895.
Genetic code expansion has largely focused on the reassignment of amber stop codons to insert single copies of non-canonical amino acids (ncAAs) into proteins. Increasing effort has been directed at employing the set of aminoacyl tRNA synthetase (aaRS) variants previously evolved for amber suppression to incorporate multiple copies of ncAAs in response to sense codons in Escherichia coli. Predicting which sense codons are most amenable to reassignment and which orthogonal translation machinery is best suited to each codon is challenging. This manuscript describes the directed evolution of a new, highly efficient variant of the Methanosarcina barkeri pyrrolysyl orthogonal tRNA/aaRS pair that activates and incorporates tyrosine. The evolved M. barkeri tRNA/aaRS pair reprograms the amber stop codon with 98.1 ± 3.6% efficiency in E. coli DH10B, rivaling the efficiency of the wild-type tyrosine-incorporating Methanocaldococcus jannaschii orthogonal pair. The new orthogonal pair is deployed for the rapid evaluation of sense codon reassignment potential using our previously developed fluorescence-based screen. Measurements of sense codon reassignment efficiencies with the evolved M. barkeri machinery are compared with related measurements employing the M. jannaschii orthogonal pair system. Importantly, we observe different patterns of sense codon reassignment efficiency for the M. jannaschii tyrosyl and M. barkeri pyrrolysyl systems, suggesting that particular codons will be better suited to reassignment by different orthogonal pairs. A broad evaluation of sense codon reassignment efficiencies to tyrosine with the M. barkeri system will highlight the most promising positions at which the M. barkeri orthogonal pair may infiltrate the E. coli genetic code.
3. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids
Chenguang Fan, Hai Xiong, Noah M Reynolds, Dieter Söll Nucleic Acids Res. 2015 Dec 15;43(22):e156. doi: 10.1093/nar/gkv800. Epub 2015 Aug 6.
Genetic encoding of noncanonical amino acids (ncAAs) into proteins is a powerful approach to study protein functions. Pyrrolysyl-tRNA synthetase (PylRS), a polyspecific aminoacyl-tRNA synthetase in wide use, has facilitated incorporation of a large number of different ncAAs into proteins to date. To make this process more efficient, we rationally evolved tRNA(Pyl) to create tRNA(Pyl-opt) with six nucleotide changes. This improved tRNA was tested as substrate for wild-type PylRS as well as three characterized PylRS variants (N(ϵ)-acetyllysyl-tRNA synthetase [AcKRS], 3-iodo-phenylalanyl-tRNA synthetase [IFRS], a broad specific PylRS variant [PylRS-AA]) to incorporate ncAAs at UAG codons in super-folder green fluorescence protein (sfGFP). tRNA(Pyl-opt) facilitated a 5-fold increase in AcK incorporation into two positions of sfGFP simultaneously. In addition, AcK incorporation into two target proteins (Escherichia coli malate dehydrogenase and human histone H3) caused homogenous acetylation at multiple lysine residues in high yield. Using tRNA(Pyl-opt) with PylRS and various PylRS variants facilitated efficient incorporation of six other ncAAs into sfGFP. Kinetic analyses revealed that the mutations in tRNA(Pyl-opt) had no significant effect on the catalytic efficiency and substrate binding of PylRS enzymes. Thus tRNA(Pyl-opt) should be an excellent replacement of wild-type tRNA(Pyl) for future ncAA incorporation by PylRS enzymes.
Online Inquiry
Verification code
Inquiry Basket