3β-[N-(N',N'-Dimethylaminoethane)-carbamoyl]cholesterol
Need Assistance?
  • US & Canada:
    +
  • UK: +

3β-[N-(N',N'-Dimethylaminoethane)-carbamoyl]cholesterol

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-004741
CAS number
137056-72-5
Molecular Formula
C32H56N2O2
Molecular Weight
500.81
3β-[N-(N',N'-Dimethylaminoethane)-carbamoyl]cholesterol
IUPAC Name
[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] N-[2-(dimethylamino)ethyl]carbamate
Synonyms
DC-Chol
Appearance
White solid
Purity
≥ 95% (HPLC)
Density
1.01±0.1 g/cm3(Predicted)
Melting Point
107.5-108.5 °C
Boiling Point
578.1±39.0 °C(Predicted)
Storage
Store at 2-8°C
InChI
InChI=1S/C32H56N2O2/c1-22(2)9-8-10-23(3)27-13-14-28-26-12-11-24-21-25(36-30(35)33-19-20-34(6)7)15-17-31(24,4)29(26)16-18-32(27,28)5/h11,22-23,25-29H,8-10,12-21H2,1-7H3,(H,33,35)/t23-,25+,26+,27-,28+,29+,31+,32-/m1/s1
InChI Key
HIHOWBSBBDRPDW-PTHRTHQKSA-N
Canonical SMILES
CC(C)CCCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)OC(=O)NCCN(C)C)C)C
1. Small interfering RNA for cancer treatment: overcoming hurdles in delivery
Nitin Bharat Charbe, et al. Acta Pharm Sin B. 2020 Nov;10(11):2075-2109. doi: 10.1016/j.apsb.2020.10.005. Epub 2020 Oct 13.
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
2. Preferential Adsorption of l-Histidine onto DOPC/Sphingomyelin/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids
Keishi Suga, Atsushi Tauchi, Takaaki Ishigami, Yukihiro Okamoto, Hiroshi Umakoshi Langmuir. 2017 Apr 18;33(15):3831-3838. doi: 10.1021/acs.langmuir.6b03264. Epub 2017 Apr 4.
We investigated the effect of organic acids such as mandelic acid (MA) and tartaric acid (TA) on the adsorption behavior of both histidine (His) and propranolol (PPL) onto liposomes. A cationic and heterogeneous liposome prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin (SM)/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Ch) in a ratio of (4/3/3) showed the highest adsorption efficiency of MA and TA independent of chirality, while neutral liposome DOPC/SM/cholesterol = (4/3/3) showed low efficiency. As expected, electrostatic interactions were dominant in MA or TA adsorption onto DOPC/SM/DC-Ch = (4/3/3) liposomes, suggesting that organic acids had adsorbed onto SM/DC-Ch-enriched domains. The adsorption behaviors of organic acids onto DOPC/SM/DC-Ch = (4/3/3) were governed by Langmuir adsorption isotherms. For adsorption, the membrane polarities slightly decreased (i.e., membrane surface was hydrophilic), but no alterations in membrane fluidity were observed. In the presence of organic acids that had been preincubated with DOPC/SM/DC-Ch = (4/3/3), the adsorption of l- and d-His onto those liposomes was examined. Preferential l-His adsorption was dramatically prevented only in the presence of l-MA, suggesting that the adsorption sites for l-His and l-MA on DOPC/SM/DC-Ch = (4/3/3) liposomes are competitive, while those for l-His and d-MA, l-TA, and d-TA are isolated.
3. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury
So-Jung Gwak, Yeomin Yun, Do Heum Yoon, Keung Nyun Kim, Yoon Ha PLoS One. 2016 Jan 29;11(1):e0147389. doi: 10.1371/journal.pone.0147389. eCollection 2016.
Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury.
Online Inquiry
Verification code
Inquiry Basket