(3R,5R)-tert-butyl 3,5-dimethylpiperazine-1-carboxylate
Need Assistance?
  • US & Canada:
    +
  • UK: +

(3R,5R)-tert-butyl 3,5-dimethylpiperazine-1-carboxylate

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

A reagent used in preparation of 5HT3 modulators.

Category
BOC-Amino Acids
Catalog number
BAT-008194
CAS number
438049-91-3
Molecular Formula
C11H22N2O2
Molecular Weight
214.3
IUPAC Name
tert-butyl (3R,5R)-3,5-dimethylpiperazine-1-carboxylate
Synonyms
(3R,5R)-1-BOC-3,5-Dimethylpiperazine
Storage
Store at 2-8°C
InChI
InChI=1S/C11H22N2O2/c1-8-6-13(7-9(2)12-8)10(14)15-11(3,4)5/h8-9,12H,6-7H2,1-5H3/t8-,9-/m1/s1
InChI Key
NUZXPHIQZUYMOR-RKDXNWHRSA-N
Canonical SMILES
CC1CN(CC(N1)C)C(=O)OC(C)(C)C
1. Fluorescence-based screening for engineered aldo-keto reductase KmAKR with improved catalytic performance and extended substrate scope
Shuai Qiu, Shen-Yuan Xu, Shu-Fang Li, Kang-Ming Meng, Feng Cheng, Ya-Jun Wang, Yu-Guo Zheng Biotechnol J. 2021 Sep;16(9):e2100130. doi: 10.1002/biot.202100130. Epub 2021 Jun 26.
Background: Aldo-keto reductases-catalyzed transformations of ketones to chiral alcohols have become an established biocatalytic process step in the pharmaceutical industry. Previously, we have discovered an aldo-keto reductase (AKR) from Kluyveromyces marxianus that is active to the aliphatic tert-butyl 6-substituted (5R/S)-hydroxy-3-oxohexanoates, but it is inactive to aromatic ketones. In order to acquire an excellent KmAKRmutant for ensuring the simultaneous improvement of activity-thermostability toward tert-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1) and broadening the universal application prospects toward more substrates covering both aliphatic and aromatic ketones, a fluorescence-based high-throughput (HT) screening technique was established. Main methods and major results: The directed evolution of KmAKR variant M5 (KmAKR-W297H/Y296W/K29H/Y28A/T63M) produced the "best" variant M5-Q213A/T23V. It exhibited enhanced activity-thermostability toward (5R)-1, improved activity toward all 18 test substrates and strict R-stereoselectivity toward 10 substrates in comparison to M5. The enhancement of enzymatic activity and the extension of substrate scope covering aromatic ketones are proposed to be largely attributed to pushing the binding pocket of M5-Q213A/T23V to the enzyme surface, decreasing the steric hindrance at the entrance and enhancing the flexibility of loops surrounding the active center. In addition, combined with 0.94 g dry cell weight (DCW) L-1 glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration, 2.81 g DCW L-1 M5-Q213A/T23V completely converted (5R)-1 of up to 450 g L-1 at 120 g g-1 substrates/catalysts (S/C), yielding the corresponding optically pure tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2, > 99.5% d.e.p ) with a space-time yield (STY) of 1.08 kg L-1 day-1 . Conclusions: A fluorescence-based HT screening system was developed to tailor KmAKR's activity, thermostability and substrate scope. The "best" variant M5-Q213A/T23V holds great potential application for the synthesis of aliphatic/aromatic R-configuration alcohols.
2. Bright bluish-green emitting Cu(I) complexes exhibiting efficient thermally activated delayed fluorescence
Chun-Hua Huang, Mingxue Yang, Xu-Lin Chen, Can-Zhong Lu Dalton Trans. 2021 Apr 21;50(15):5171-5176. doi: 10.1039/d0dt04424e.
Three strongly emissive Cu(i) complexes [Cu(tBupzmpy)(POP)]BF4(1), [Cu(Phpzmpy)(POP)]BF4(2) and [Cu(Adpzmpy)(POP)]BF4(3) (tBupzmpy = 2-(5-(tert-butyl)-1H-pyrazol-3-yl)-6-methylpyridine, Phpzmpy = 2-methyl-6-(5-phenyl-1H-pyrazol-3-yl)pyridine, Adpzmpy = 2-(5-((3R,5R)-adamantan-1-yl)-1H-pyrazol-3-yl)-6-methylpyridine, and POP = bis[2-(diphenylphosphino)phenyl]ether) were synthesized and characterized. These complexes exhibit bright bluish-green photoluminescence in the solid state with quantum yields of 91% (1), 71% (2) and 77% (3) and lifetimes of 13.4 μs (1), 32.9 μs (2) and 34.1 μs (3) at room temperature. The results of theoretical calculations, coupled with the temperature dependence of the spectroscopic properties and emission decay behaviors, reveal that the title Cu(i) complexes emit efficient thermally activated delayed fluorescence (TADF) from excited states involving metal-to-ligand charge transfer (MLCT) transitions and ligand-to-ligand charge transfer (LLCT) transitions. The emissive-state characteristics and emission properties of the investigated Cu(i) complexes were tuned effectively by changing the steric and electronic structures of the diimine ligands.
3. Improving the catalytic efficiency of aldo-keto reductase KmAKR towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate via semi-rational design
Han Yu, Shuai Qiu, Feng Cheng, Ying-Nan Cheng, Ya-Jun Wang, Yu-Guo Zheng Bioorg Chem. 2019 Sep;90:103018. doi: 10.1016/j.bioorg.2019.103018. Epub 2019 Jun 8.
t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2) is an important chiral diol synthon of atorvastatin calcium. Previously, we constructed a variant KmAKR-W297H (M1) of Kluyveromyces marxianus aldo-keto reductase (KmAKR, designated as M0), possessing excellent diastereoselectivity but moderate activity towards t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1). In this work, KmAKR-W297H/Y296W/K29H (M3) was developed via semi-rational design. It exhibited much improved catalytic efficiency towards (5R)-1. The Km values of M3 for NADPH and (5R)-1 were 0.15 mmol/L and 1.41 mmol/L, and the maximal reaction rate vmax was 55.56 μmol/min/mg. Compared with M1, the catalytic efficiency kcat/Km of M3 was increased 2.64-fold. Coupled with Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) for nicotinamide adenine dinucleotide phosphate (NADPH) regeneration, M3 took 3.5 h to completely reduce (5R)-1 at up to 100.0 g/L, producing 237.4 mmol/L (3R,5R)-2 in d.e.P value above 99.5%. The space-time yield (STY) of M3-catalyzed (3R,5R)-2 synthesis was 372.8 g/L/d.
Online Inquiry
Verification code
Inquiry Basket