3X FLAG peptide TFA
Need Assistance?
  • US & Canada:
    +
  • UK: +

3X FLAG peptide TFA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

3X FLAG peptide TFA is a synthetic peptide of 23 amino acid residue.

Category
Others
Catalog number
BAT-009157
Molecular Formula
C120H169N31O49S.C2HF3O2
Molecular Weight
2975.84
IUPAC Name
(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-carboxypropanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-3-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]hexanoic acid;2,2,2-trifluoroacetic acid
Synonyms
3X Flag Peptide Trifluoroacetate; H-Met-Asp-Tyr-Lys-Asp-His-Asp-Gly-Asp-Tyr-Lys-Asp-His-Asp-Ile-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-OH.TFA; L-methionyl-L-alpha-aspartyl-L-tyrosyl-L-lysyl-L-alpha-aspartyl-L-histidyl-L-alpha-aspartyl-glycyl-L-alpha-aspartyl-L-tyrosyl-L-lysyl-L-alpha-aspartyl-L-histidyl-L-alpha-aspartyl-L-isoleucyl-L-alpha-aspartyl-L-tyrosyl-L-lysyl-L-alpha-aspartyl-L-alpha-aspartyl-L-alpha-aspartyl-L-alpha-aspartyl-L-lysine trifluoroacetic acid
Related CAS
402750-12-3 (free base)
Appearance
Powder
Purity
≥98%
Sequence
MDYKDHDGDYKDHDIDYKDDDDK.TFA
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C120H169N31O49S.C2HF3O2/c1-4-56(2)98(119(198)150-84(49-96(174)175)117(196)139-72(37-59-21-27-64(154)28-22-59)106(185)134-68(15-7-11-32-123)103(182)145-81(46-93(168)169)114(193)147-83(48-95(172)173)116(195)148-82(47-94(170)171)115(194)146-78(43-90(162)163)110(189)135-69(120(199)200)16-8-12-33-124)151-118(197)85(50-97(176)177)149-108(187)74(39-61-52-127-55-130-61)141-113(192)80(45-92(166)167)144-101(180)66(13-5-9-30-121)132-104(183)70(35-57-17-23-62(152)24-18-57)137-109(188)76(41-88(158)159)131-86(155)53-128-100(179)75(40-87(156)157)142-107(186)73(38-60-51-126-54-129-60)140-112(191)79(44-91(164)165)143-102(181)67(14-6-10-31-122)133-105(184)71(36-58-19-25-63(153)26-20-58)138-111(190)77(42-89(160)161)136-99(178)65(125)29-34-201-3;3-2(4,5)1(6)7/h17-28,51-52,54-56,65-85,98,152-154H,4-16,29-50,53,121-125H2,1-3H3,(H,126,129)(H,127,130)(H,128,179)(H,131,155)(H,132,183)(H,133,184)(H,134,185)(H,135,189)(H,136,178)(H,137,188)(H,138,190)(H,139,196)(H,140,191)(H,141,192)(H,142,186)(H,143,181)(H,144,180)(H,145,182)(H,146,194)(H,147,193)(H,148,195)(H,149,187)(H,150,198)(H,151,197)(H,156,157)(H,158,159)(H,160,161)(H,162,163)(H,164,165)(H,166,167)(H,168,169)(H,170,171)(H,172,173)(H,174,175)(H,176,177)(H,199,200);(H,6,7)/t56-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,98-;/m0./s1
InChI Key
GTFCLKXQJOUAAB-XMLADREXSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)O)C(=O)NC(CCCCN)C(=O)O)NC(=O)C(CC(=O)O)NC(=O)C(CC2=CN=CN2)NC(=O)C(CC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)C(CC(=O)O)NC(=O)CNC(=O)C(CC(=O)O)NC(=O)C(CC4=CN=CN4)NC(=O)C(CC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)C(CC(=O)O)NC(=O)C(CCSC)N.C(=O)(C(F)(F)F)O
1. Isolation of intact and active FoF1 ATP synthase using a FLAG-tagged subunit from the cyanobacterium Synechocystis sp. PCC 6803
Kuo Song, Stefan Tholen, Desirée Baumgartner, Oliver Schilling, Wolfgang R Hess STAR Protoc. 2022 Aug 16;3(3):101623. doi: 10.1016/j.xpro.2022.101623. eCollection 2022 Sep 16.
The FoF1 ATP synthase (ATPase) is one of the most important protein complexes in energy metabolism. The isolation of functional ATPase complexes is fundamental to address questions about its assembly, regulation, and functions. This protocol describes the purification of intact and active ATPase from the model cyanobacterium Synechocystis sp. PCC 6803. Basis for purification is a 3×FLAG tag fused to the beta subunit. The ATPase is enzymatically active and its purity is demonstrated using mass spectrometry, denaturing, and blue-native PAGE. For complete details on the use and execution of this protocol, please refer to Song et al. (2022).
2. Isolation of Thylakoid Membranes from the Cyanobacterium Synechocystis sp. PCC 6803 and Analysis of Their Photosynthetic Pigment-protein Complexes by Clear Native-PAGE
Josef Komenda, Vendula Krynická, Tomas Zakar Bio Protoc. 2019 Jan 5;9(1):e3126. doi: 10.21769/BioProtoc.3126.
Cyanobacteria represent a frequently used model organism for the study of oxygenic photosynthesis. They belong to prokaryotic microorganisms but their photosynthetic apparatus is quite similar to that found in algal and plant chloroplasts. The key players in light reactions of photosynthesis are Photosystem I and Photosystem II complexes (PSI and PSII, resp.), large membrane complexes of proteins, pigments and other cofactors embedded in specialized photosynthetic membranes named thylakoids. For the study of these complexes a mild method for the isolation of the thylakoids, their subsequent solubilization and analysis is essential. The presented protocol describes such a method which utilizes breaking the cyanobacterial cells using glass beads in an optimized buffer. This is followed by their solubilization using dodecyl-maltoside and analysis using optimized clear-native gel electrophoresis which preserves the native oligomerization state of both complexes and allows the estimation of their content.
3. Improved Tandem Affinity Purification Tag and Methods for Isolation of Proteins and Protein Complexes from Schizosaccharomyces pombe
Nicola Zilio, Michael N Boddy Cold Spring Harb Protoc. 2017 Mar 1;2017(3):pdb.prot091611. doi: 10.1101/pdb.prot091611.
The tandem affinity purification (TAP) method uses an epitope that contains two different affinity purification tags separated by a site-specific protease site to isolate a protein rapidly and easily. Proteins purified via the TAP tag are eluted under mild conditions, allowing them to be used for structural and biochemical analyses. The original TAP tag contains a calmodulin-binding peptide and the IgG-binding domain from protein A separated by a tobacco etch virus (TEV) protease cleavage site. After capturing the Protein A epitope on an IgG resin, bound proteins are released by incubation with the TEV protease and then isolated on a calmodulin matrix in the presence of calcium; elution from this resin is achieved by chelating calcium with EGTA. However, because the robustness of the calmodulin-binding step in this procedure is highly variable, we replaced the calmodulin-binding peptide with three copies of the FLAG epitope, (3× FLAG)-TEV-Protein A, which can be isolated using an anti-FLAG resin. Elution from this matrix is achieved in the presence of an excess of a 3× FLAG peptide. In addition to allowing proteins to be released under mild conditions, elution by the 3× FLAG peptide adds an extra layer of specificity to the TAP procedure, because it liberates only FLAG-tagged proteins.
Online Inquiry
Verification code
Inquiry Basket