3xFlag peptide
Need Assistance?
  • US & Canada:
    +
  • UK: +

3xFlag peptide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

3xFlag peptide is a synthetic peptide of 23 amino acid residue. The peptide can bind to the antibody M1.

Category
Peptide Inhibitors
Catalog number
BAT-006148
CAS number
402750-12-3
Molecular Formula
C120H169N31O49S
Molecular Weight
2861.87
3xFlag peptide
Size Price Stock Quantity
10 mg $199 In stock
IUPAC Name
(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-carboxypropanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-3-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]hexanoic acid
Synonyms
Met-Asp-Tyr-Lys-Asp-His-Asp-Gly-Asp-Tyr-Lys-Asp-His-Asp-Ile-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys
Appearance
Lyophilized Powder
Purity
98%
Density
1.458±0.06 g/cm3 (Predicted)
Boiling Point
2863.6±65.0°C (Predicted)
Sequence
MDYKDHDGDYKDHDIDYKDDDDK
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C120H169N31O49S/c1-4-56(2)98(119(198)150-84(49-96(174)175)117(196)139-72(37-59-21-27-64(154)28-22-59)106(185)134-68(15-7-11-32-123)103(182)145-81(46-93(168)169)114(193)147-83(48-95(172)173)116(195)148-82(47-94(170)171)115(194)146-78(43-90(162)163)110(189)135-69(120(199)200)16-8-12-33-124)151-118(197)85(50-97(176)177)149-108(187)74(39-61-52-127-55-130-61)141-113(192)80(45-92(166)167)144-101(180)66(13-5-9-30-121)132-104(183)70(35-57-17-23-62(152)24-18-57)137-109(188)76(41-88(158)159)131-86(155)53-128-100(179)75(40-87(156)157)142-107(186)73(38-60-51-126-54-129-60)140-112(191)79(44-91(164)165)143-102(181)67(14-6-10-31-122)133-105(184)71(36-58-19-25-63(153)26-20-58)138-111(190)77(42-89(160)161)136-99(178)65(125)29-34-201-3/h17-28,51-52,54-56,65-85,98,152-154H,4-16,29-50,53,121-125H2,1-3H3,(H,126,129)(H,127,130)(H,128,179)(H,131,155)(H,132,183)(H,133,184)(H,134,185)(H,135,189)(H,136,178)(H,137,188)(H,138,190)(H,139,196)(H,140,191)(H,141,192)(H,142,186)(H,143,181)(H,144,180)(H,145,182)(H,146,194)(H,147,193)(H,148,195)(H,149,187)(H,150,198)(H,151,197)(H,156,157)(H,158,159)(H,160,161)(H,162,163)(H,164,165)(H,166,167)(H,168,169)(H,170,171)(H,172,173)(H,174,175)(H,176,177)(H,199,200)/t56-,65+,66+,67+,68+,69+,70+,71+,72+,73+,74+,75+,76+,77+,78+,79+,80+,81+,82+,83+,84+,85+,98+/m1/s1
InChI Key
SNXSKDGBSPFDDR-TVALGQQNSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)O)C(=O)NC(CCCCN)C(=O)O)NC(=O)C(CC(=O)O)NC(=O)C(CC2=CNC=N2)NC(=O)C(CC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)C(CC(=O)O)NC(=O)CNC(=O)C(CC(=O)O)NC(=O)C(CC4=CNC=N4)NC(=O)C(CC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)C(CC(=O)O)NC(=O)C(CCSC)N
1. Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway
Mengjie Li, Tingting Guo, Jiayi Lin, Xia Huang, Qiaodan Ke, Yujian Wu, Chunping Fang, Chenxia Hu J Ethnopharmacol. 2022 Jan 30;283:114689. doi: 10.1016/j.jep.2021.114689. Epub 2021 Sep 28.
Ethnopharmacological relevance: In traditional Chinese medicine, there is a long history that curcuma longa L is used to treat distending pain of chest and belly, arthralgia of shoulder and arm aggravated by cold. Traditional Chinese medicine holds that breast cancer is caused by cold congelation, stagnation of qi and blood stasis. It is usually treated with some pungent and warm Chinese herbs, such as Curcuma longaL and Curcuma zedoaria (Christm.) Rosc, which are effective in promoting blood circulation for removing blood stasis, activating qi-flowing and relieving pain. Curcumin, a polyphenolic compound, is the main pharmacological component extracted from the rhizome of Curcuma longa L. Modern pharmacological studies have found that curcumin has many kinds of pharmacological activities of anti-inflammatory, anti-tumor, anti-angiogenesis, anti-metastasis and anti-multidrug resistance. Aim of the study: To explore the mechanism of curcumin and Glioma-associated oncogene homolod-1 (Gli1) on invasion and metastasis of triple negative breast cancer (TNBC) cells through the Hedgehog (Hh)/Gli signaling pathway. Material and methods: The effect of curcumin on TNBC cells was detected by colony formation, wound healing and transwell assay. Breast cancer stem cells (BCSCs) were cultured in serum-free medium and its stemness was detected by flow cytometry and subcutaneous xenografted tumor assay. The formation of mammospheres was used to detect the effect of curcumin and GANT61 (Gli inhibitor)on the formation ability of BCSCs. Gli1 overexpressed was conducted in MDA-MB-231 cells by lentivirus vector HBLV-h-Gli1-3xflag-ZsGreen-PURO. RT-qPCR and Western blot were detected the mRNA and protein level of genes of Hh pathway, Epithelial-mesenchymal transition (EMT) and stemness. The nuclear localization and expression of Gli1 was observed by laser confocal microscope scanning. Co-IP was investigated the key genes interacted with Gli1. Results: The abilities of proliferation, invasion, migration and the formation of mammospheres in TNBC cells were inhibited by curcumin. Furthermore, curcumin reduced the invasion and migration abilities in stable Gli1-overexpressing MDA-MB-231 cell. Moreover, curcumin down-regulated the expression of genes related Hh pathway, EMT and stemness in MDA-MB-231 mammospheres. Observation of laser confocal microscope showed that Gli1 were expressed mainly in nucleus in MDA-MB-231 adherent cells and completely in nucleus in BCSCs, which was significantly reduced in the nucleus and cytoplasm after curcumin treatment. Besides, our results suggested that vimentin was interacted with Gli1. Conclusions: Curcumin can inhibit the proliferation and metastasis of TNBC cells, EMT and characteristics of BCSC by Hedgehog/Gli1 pathway.
2. Serial Immunoprecipitation of 3xFLAG/V5-tagged Yeast Proteins to Identify Specific Interactions with Chaperone Proteins
Xu Zheng, David Pincus Bio Protoc. 2017 Jun 20;7(12):e2348. doi: 10.21769/BioProtoc.2348.
This method was generated to isolate high affinity protein complexes from yeast lysate by performing serial affinity purification of doubly tagged 3×FLAG/V5 proteins. First, the bait protein of interest is immunoprecipitated by anti-FLAG-conjugated magnetic beads and gently eluted by 3×FLAG antigen peptide. Next, the bait protein is recaptured from the first eluate by anti-V5-conjugated magnetic beads and eluted with ionic detergent. In this manner, the majority of abundant, nonspecific proteins remain either bound to the first beads or in the first eluate, allowing pure, high affinity complexes to be obtained. This approach can be used to show specific interactions with notoriously 'sticky' chaperone proteins.
3. N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function
Alex Bicket, Imogen R Coe Biosci Rep. 2016 Aug 31;36(4):e00376. doi: 10.1042/BSR20160063. Print 2016 Aug.
Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn(48) in the first extracellular loop of the protein and that glycosylation plays a role in correct localization and function of hENT1. Site-directed mutagenesis of wild-type (wt) hENT1 removed potential glycosylation sites. Constructs (wt 3xFLAG-hENT1, N48Q-3xFLAG-hENT1 or N288Q-3xFLAG-hENT2) were transiently transfected into HEK293 cells and cell lysates were treated with or without peptide-N-glycosidase F (PNGase-F), followed by immunoblotting analysis. Substitution of N48 prevents hENT1 glycosylation, confirming a single N-linked glycosylation site. N48Q-hENT1 protein is found at the plasma membrane in HEK293 cells but at lower levels compared with wt hENT1 based on S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding analysis (wt 3xFLAG-ENT1 Bmax, 41.5±2.9 pmol/mg protein; N48Q-3xFLAG-ENT1 Bmax, 13.5±0.45 pmol/mg protein) and immunofluorescence microscopy. Although present at the membrane, chloroadenosine transport assays suggest that N48Q-hENT1 is non-functional (wt 3xFLAG-ENT1, 170.80±44.01 pmol/mg protein; N48Q-3xFLAG-ENT1, 57.91±17.06 pmol/mg protein; mock-transfected 74.31±19.65 pmol/mg protein). Co-immunoprecipitation analyses suggest that N48Q ENT1 is unable to interact with self or with wt hENT1. Based on these data we propose that glycosylation at N48 is critical for the localization, function and oligomerization of hENT1.
Online Inquiry
Verification code
Inquiry Basket