4-(4-Azidophenyl)butyric acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

4-(4-Azidophenyl)butyric acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Azido Amino Acids
Catalog number
BAT-007623
CAS number
103489-33-4
Molecular Formula
C10H11N3O2
Molecular Weight
205.22
4-(4-Azidophenyl)butyric acid
IUPAC Name
4-(4-azidophenyl)butanoic acid
Synonyms
4-(4-AZIDOPHENYL)BUTYRIC ACID; Benzenebutanoic acid,4-azido-
Appearance
Beige powder
Purity
≥ 98% (TLC)
Storage
Store at RT
InChI
InChI=1S/C10H11N3O2/c11-13-12-9-6-4-8(5-7-9)2-1-3-10(14)15/h4-7H,1-3H2,(H,14,15)
InChI Key
IXJMMVGNIFCPFH-UHFFFAOYSA-N
Canonical SMILES
C1=CC(=CC=C1CCCC(=O)O)N=[N+]=[N-]
1. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line
K K Pun, P Lau, P W Ho J Bone Miner Res. 1989 Dec;4(6):853-62. doi: 10.1002/jbmr.5650040610.
The properties and regulation of insulin receptors on monolayers of cultured clonal osteoblastic rat osteosarcoma UMR-106 cells and human osteosarcoma U20S cells were studied. Confluent cultures of UMR-106 cells bound lactoperoxidase-labeled, HPLC-purified [125I]A-14-monoiodinated insulin in a reversible, saturable, and specific manner. Binding was related inversely to the incubation temperature. Prolonged period of steady-state binding was achieved at all temperatures studied. Competition curves demonstrated half-maximal inhibition of [125I]insulin binding at an unlabeled insulin concentration of about 1 nM. Scatchard analysis of the binding data was curvilinear, suggesting negative cooperativity, and revealed that UMR-106 osteoblasts contained about 87,000 receptor sites per cell according to a two-site model. Bound [125I]insulin dissociated from osteoblasts with a t1/2 of about 15 minutes at 22 degrees C. The dissociation curve was multiexponential, and the addition of native insulin accelerated the dissociation of intact but not degraded [125I]insulin. Preincubation with 125 nM insulin for 1 h induced 70% loss of binding sites and reduced total insulin bound by 30%. When monolayers were treated with the lysosomotropic agent chloroquine, a 40% increase in cell-associated radioactivity that could not be dissociable in fresh buffer was observed. The use of an energy depleter, sodium fluoride, completely inhibited the effects of chloroquine. Similar results were obtained for human osteosarcoma U20S cells except that the number of receptor sites was far less than that of UMR-106 cells. Insulin increased collagen synthesis at a half-maximal concentration of 1 nM. To conclude, cultured rat and human osteoblasts possess insulin receptors that exhibit kinetic properties and specificity similar to those of other insulin target cells. Receptor-bound insulin is internalized and degraded by a chloroquine-sensitive, energy-requiring reaction. Insulin receptor on bone cells modulates the synthesis of collagen and this role may be important in bone homeostasis.
2. The trafficking and processing of insulin and insulin receptors in cultured rat hepatocytes
J R Levy, J M Olefsky Endocrinology. 1987 Dec;121(6):2075-86. doi: 10.1210/endo-121-6-2075.
The processing and trafficking of insulin in cultured rat hepatocytes were studied. A time course of binding of radiolabeled insulin to hepatocytes at 37 C revealed a rapid rise in cell-associated radioactivity that reached a steady state by 20 min. Using an acid medium to extract insulin bound to surface receptors, the time courses of receptor binding and internalization of the ligand were characterized. The earliest event in insulin processing was the binding of insulin to surface receptors, reaching steady state by 20 min with a t1/2 of 4 min. The internalization rate of ligand was initially slower than the binding rate, with a t1/2 of 6 min. Similar internalization rates of the insulin receptor were found by measuring the trypsin sensitivity of hepatocyte insulin receptors covalently occupied with a photo-affinity-labeled derivative of insulin [( 125I]B2 (2-nitro-4-azido-phenylacetyl)Des-PheB1-insulin). At steady state, the internalized ligand and receptor comprised approximately 40-45% of the cell-associated radioactivity. The time course of intracellular degradation was assessed by trichloroacetic acid (TCA) precipitability and Sephadex G-50 gel chromatography of solubilized cells containing only internalized radioactivity. Intracellular TCA-soluble and low mol wt degradation products first appeared by 5 min and were released from the cell 3 min later. Chloroquine (100 microM) completely inhibited the formation of intracellular low mol wt degradation products as well as their appearance in the medium. The release of intracellular radioactivity was assessed by first removing surface-bound insulin with acid extraction. Eighty percent of the intracellular radioactivity was released in 45 min with a t1/2 of 8 min. The released radioactivity was assessed by TCA precipitability and gel chromatography. These results demonstrate that after 20 min, 43% of the released intracellular radioactivity is intact insulin. The percentage of intact insulin released increases in a dose-dependent fashion as the amount of insulin bound and internalized increases. In conclusion, the earliest event in insulin processing is binding to surface receptors. After a short delay, insulin and its receptor are internalized and trafficked into either a chloroquine-sensitive degradative pathway or a chloroquine-insensitive retroendocytotic pathway. The amount of insulin that traverses the nondegradative retroendocytotic pathway is proportional to the amount of insulin bound and internalized by the cell.
3. Insulin receptors in isolated human adipocytes. Characterization by photoaffinity labeling and evidence for internalization and cellular processing
P Berhanu, O G Kolterman, A Baron, P Tsai, J M Olefsky, D Brandenburg J Clin Invest. 1983 Dec;72(6):1958-70. doi: 10.1172/JCI111160.
We photolabeled and characterized insulin receptors in isolated adipocytes from normal human subjects and then studied the cellular fate of the labeled insulin-receptor complexes at physiologic temperatures. The biologically active photosensitive insulin derivative, B2(2-nitro-4-azidophenylacetyl)des-PheB1-insulin (NAPA-DP-insulin) was used to photoaffinity label the insulin receptors, and the specifically labeled cellular proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. At saturating concentrations, the binding of 125I-NAPA-DP-insulin to the isolated adipocytes at 16 degrees C was rapid (half-maximal in approximately 1 min and maximal in approximately 10 min) and approximately 25% of the specifically bound ligand was covalently linked to the cells by a 3-min exposure to long-wave (366 nm) ultraviolet light. Analysis of the photolabeled cellular proteins by PAGE in the absence of disulfide reductants revealed the specific labeling of a major protein band of Mr 330,000 and two less intense bands of Mr 295,000 and 260,000. Upon reduction of disulfide bonds with dithiothreitol, all three unreduced forms of the insulin receptor were converted into a major labeled Mr-125,000 band and a less intensely labeled Mr-90,000 band. The labeling of the Mr-125,000 receptor subunit was saturable and native porcine insulin effectively inhibited (half-maximal inhibition at 12 ng/ml) the photolabeling of this binding subunit by NAPA-DP insulin. When intact adipocytes photolabeled at 16 degrees C (a temperature that inhibits endocytosis) were immediately trypsinized, all of the labeled receptor bands were converted into small molecular weight tryptic fragments, indicating that at 16 degrees C all of the labeled insulin-receptor complexes remained on the cell surface. However, when the photolabeled cells were further incubated at 37 degrees C and then trypsinized, a proportion of the labeled receptors became trypsin insensitive, indicating that this fraction has been translocated to the cell interior and thus was inaccessible to the trypsin in the incubation medium. The intracellular translocation of the labeled receptors was observed within 2 min, became half-maximal by 10 min, and maximal by approximately 30 min of incubation at 37 degrees C. Cellular processing of the internalized insulin-receptor complexes also occurred, since incubation at 37 degrees C (but not 16 degrees C) resulted in the generation of a Mr-115,000 component from the labeled receptors. Inclusion of chloroquine, a drug with lysosomotropic properties, in the incubation media caused a time-dependent increase (maximal increase of 50% above control by 2 h at 37 degrees C) in the intracellular pool of labeled receptors. In contrast to these findings in human adipocytes, no appreciable internalization of insulin-receptor complexes and no chloroquine effect was observed in cultures human IM-9 lymphocytes during a 1-h incubation at 37 degrees C. We concluded that in isolated human adipocytes: (a) the subunit structure of insulin receptors is the same as that reported for several other tissues, (b) insulin-receptor complexes are rapidly internalized and processed at physiologic temperatures, and (c) the cellular processing of insulin-receptor complexes occurs at one or more chloroquine-sensitive intracellular site(s).
Online Inquiry
Verification code
Inquiry Basket