5-FAM-Amyloid β-Protein (1-42) (scrambled)
Need Assistance?
  • US & Canada:
    +1-844-BOC(262)-0123
  • UK: +44-20-3286-1088

5-FAM-Amyloid β-Protein (1-42) (scrambled)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

5-FAM-Amyloid β-Protein (1-42) (scrambled) is a fluorescent dye-labeled inactive control for amyloid β42.

Category
Functional Peptides
Catalog number
BAT-014762
Molecular Formula
C224H321N55O66S
Molecular Weight
4872.41
Synonyms
5-FAM-Beta-Amyloid (1-42), Scrambled, Human; Fluorescein-5-carbonyl-Ala-Ile-Ala-Glu-Gly-Asp-Ser-His-Val-Leu-Lys-Glu-Gly-Ala-Tyr-Met-Glu-Ile-Phe-Asp-Val-Gln-Gly-His-Val-Phe-Gly-Gly-Lys-Ile-Phe-Arg-Val-Val-Asp-Leu-Gly-Ser-His-Asn-Val-Ala-OH
Appearance
Yellow Powder
Purity
≥90%
Sequence
Fluorescein-5-carbonyl-AIAEGDSHVLKEGAYMEIFDVQGHVFGGKIFRVVDLGSHNVA
Storage
Store at -20°C
1. KLVFF oligopeptide-decorated amphiphilic cyclodextrin nanomagnets for selective amyloid beta recognition and fishing
Antonino Mazzaglia, et al. J Colloid Interface Sci. 2022 May;613:814-826. doi: 10.1016/j.jcis.2022.01.051. Epub 2022 Jan 10.
Recognition and capture of amyloid beta (Aβ) is a challenging task for the early diagnosis of neurodegenerative disorders, such as Alzheimer's disease. Here, we report a novel KLVFF-modified nanomagnet based on magnetic nanoparticles (MNP) covered with a non-ionic amphiphilic β-cyclodextrin (SC16OH) and decorated with KLVFF oligopeptide for the self-recognition of the homologous amino-acids sequence of Aβ to collect Aβ (1-42) peptide from aqueous samples. MNP@SC16OH and MNP@SC16OH/Ada-Pep nanoassemblies were fully characterized by complementary techniques both as solid powders and in aqueous dispersions. Single domain MNP@SC16OH/Ada-Pep nanomagnets of 20-40 nm were observed by TEM analysis. DLS and ζ-potential measurements revealed that MNP@SC16OH nanoassemblies owned in aqueous dispersion a hydrodynamic radius of about 150 nm, which was unaffected by Ada-Pep decoration, while the negative ζ-potential of MNP@SC16OH (-40 mV) became less negative (-30 mV) in MNP@SC16OH/Ada-Pep, confirming the exposition of positively charged KLVFF on nanomagnets surface. The ability of MNP@SC16OH/Ada-Pep to recruit Aβ (1-42) in aqueous solution was evaluated by MALDI-TOF and compared with the ineffectiveness of undecorated MNP@SC16OH and VFLKF scrambled peptide-decorated nanoassemblies (MNP@SC16OH/Ada-scPep), pointing out the selectivity of KLVFF-decorated nanohybrid towards Aβ (1-42). Finally, the property of nanomagnets to extract Aβ in conditioned medium of cells over-producing Aβ peptides was investigated as proof of concept of effectiveness of these nanomaterials as potential diagnostic tools.
2. High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands
Min Hu, Mark E Schurdak, Pamela S Puttfarcken, Rachid El Kouhen, Murali Gopalakrishnan, Jinhe Li Brain Res. 2007 Jun 2;1151:227-35. doi: 10.1016/j.brainres.2007.03.051. Epub 2007 Mar 24.
beta-Amyloid peptide 1-42 (A beta(1-42)) is generated from amyloid precursor protein (APP) and associated with neurodegeneration in Alzheimer's disease (AD). A beta(1-42) has been shown to be cytotoxic when incubated with cultured neurons. However, APP transgenic mice over-expressing A beta(1-42) do not show substantial loss of neurons, despite deficits in learning and memory. It is thus emerging that A beta(1-42)-induced memory deficits may involve subtler neuronal alternations leading to synaptic deficits, prior to frank neurodegeneration in AD brains. In this study, high content screen (HCS) microscopy, an advanced high-throughput cellular image processing and analysis technique, was utilized in establishing an in vitro model of A beta(1-42)-induced neurotoxicity utilizing rat neonatal primary cortical cells. Neurite outgrowth was found to be significantly reduced by A beta(1-42) (300 nM to 30 microM), but not by the scrambled control peptide control, in a time- and concentration-dependent manner. In contrast, no reduction in the total number of neurons was observed. The A beta(1-42)-induced reduction of neurite outgrowth was attenuated by the NMDA receptor antagonist memantine and the alpha 7 nicotinic acetylcholine receptor (nAChR) selective agonist PNU-282987. Interestingly, the alpha 7 nAChR antagonist methyllycaconitine also significantly prevented reduction in A beta(1-42)-induced neurite outgrowth. The observed neuroprotective effects could arise either from interference of A beta(1-42) interactions with alpha 7 nAChRs or by modification of receptor-mediated signaling pathways. Our studies demonstrate that reduction of neurite outgrowth may serve as a model representing A beta(1-42)-mediated neuritic and synaptic toxicity, which, in combination of HCS, provides a high-throughput cell-based assay that can be used to evaluate compounds with neuroprotective properties in neurons.
3. Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-β 1-42
Devkee M Vadukul, Oyinkansola Gbajumo, Karen E Marshall, Louise C Serpell FEBS Lett. 2017 Mar;591(5):822-830. doi: 10.1002/1873-3468.12590. Epub 2017 Feb 28.
β-amyloid 1-42 (Aβ1-42) is a self-assembling peptide that goes through many conformational and morphological changes before forming the fibrils that are deposited in extracellular plaques characteristic of Alzheimer's disease. The link between Aβ1-42 structure and toxicity is of major interest, in particular, the neurotoxic potential of oligomeric species. Many studies utilise reversed (Aβ42-1) and scrambled (AβS) forms of amyloid-β as control peptides. Here, using circular dichroism, thioflavin T fluorescence and transmission electron microscopy, we reveal that both control peptides self-assemble to form fibres within 24 h. However, oligomeric Aβ reduces cell survival of hippocampal neurons, while Aβ42-1 and Aβs have reduced effect on cellular health, which may arise from their ability to assemble rapidly to form protofibrils and fibrils.
Online Inquiry
0
Inquiry Basket

No data available, please add!

Delete selectedGo to checkout

We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy

x