6-Methoxy-2-methylpyridine-3-boronic acid pinacol ester
Need Assistance?
  • US & Canada:
    +
  • UK: +

6-Methoxy-2-methylpyridine-3-boronic acid pinacol ester

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-008835
CAS number
1080028-73-4
Molecular Formula
C13H20BNO3
Molecular Weight
249.12
6-Methoxy-2-methylpyridine-3-boronic acid pinacol ester
IUPAC Name
6-methoxy-2-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine
Synonyms
1080028-73-4; 6-methoxy-2-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine; 6-METHOXY-2-METHYLPYRIDINE-3-BORONICACIDPINACOLESTER; {\rtf1\ansi\deff0{\fonttbl{\f0\fnil\fcharset0MSSansSerif; }}; SCHEMBL2661238
Purity
95%
InChI
InChI=1S/C13H20BNO3/c1-9-10(7-8-11(15-9)16-6)14-17-12(2,3)13(4,5)18-14/h7-8H,1-6H3
InChI Key
CWJKZNNXSPVPAY-UHFFFAOYSA-N
Canonical SMILES
B1(OC(C(O1)(C)C)(C)C)C2=C(N=C(C=C2)OC)C
1. Targeted Treatment of Ischemic Stroke by Bioactive Nanoparticle-Derived Reactive Oxygen Species Responsive and Inflammation-Resolving Nanotherapies
Jichao Yuan, et al. ACS Nano. 2021 Oct 26;15(10):16076-16094. doi: 10.1021/acsnano.1c04753. Epub 2021 Oct 4.
Stroke is a primary cause of death and disability worldwide, while effective and safe drugs remain to be developed for its clinical treatment. Herein, we report bioactive nanoparticle-derived multifunctional nanotherapies for ischemic stroke, which are engineered from a pharmacologically active oligosaccharide material (termed as TPCD) prepared by covalently conjugating a radical-scavenging compound (Tempol) and a hydrogen-peroxide-eliminating moiety of phenylboronic acid pinacol ester (PBAP) on β-cyclodextrin. Of note, combined functional moieties of Tempol and PBAP on β-cyclodextrin contribute to antioxidative and anti-inflammatory activities of TPCD. Cellularly, TPCD nanoparticles (i.e., TPCD NPs) reduced oxygen-glucose deprivation-induced overproduction of oxidative mediators, increased antioxidant enzyme expression, and suppressed microglial-mediated inflammation, thereby inhibiting neuronal apoptosis. After intravenous (i.v.) delivery, TPCD NPs could efficiently accumulate at the cerebral ischemic injury site of mice with middle cerebral artery occlusion (MCAO), showing considerable distribution in cells relevant to the pathogenesis of stroke. Therapeutically, TPCD NPs significantly decreased infarct volume and accelerated recovery of neurological function in MCAO mice. Mechanistically, efficacy of TPCD NPs is achieved by its antioxidative, anti-inflammatory, and antiapoptotic effects. Furthermore, TPCD NPs can function as a reactive oxygen species labile nanovehicle to efficiently load and triggerably release an inflammation-resolving peptide Ac2-26, giving rise to an inflammation-resolving nanotherapy (i.e., ATPCD NP). Compared to TPCD NP, ATPCD NP demonstrated notably enhanced in vivo efficacies, largely resulting from its additional inflammation-resolving activity. Consequently, TPCD NP-derived nanomedicines can be further developed as promising targeted therapies for stroke and other inflammation-associated cerebrovascular diseases.
2. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis
Wentao Fan, Shuo Zhang, Yuting Wu, Tao Lu, Jiwen Liu, Xiuyun Cao, Shuhui Liu, Liping Yan, Xizhi Shi, Guangliang Liu, Chaobo Huang, Suquan Song ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40249-40266. doi: 10.1021/acsami.1c09215. Epub 2021 Aug 23.
Disruption of intestinal homeostasis is an important event in the development of inflammatory bowel disease (IBD), and genistein (GEN) is a candidate medicine to prevent IBD. However, the clinical application of GEN is restricted owing to its low oral bioavailability. Herein, a reactive oxygen species (ROS)-responsive nanomaterial (defined as GEN-NP2) containing superoxidase dismutase-mimetic temporally conjugated β-cyclodextrin and 4-(hydroxymethyl)phenylboronic acid pinacol ester-modified GEN was prepared. GEN-NP2 effectively delivered GEN to the inflammation site and protected GEN from rapid metabolism and elimination in the gastrointestinal tract. In response to high ROS levels, GEN was site-specifically released and accumulated at inflammatory sites. Mechanistically, GEN-NP2 effectively increased the expression of estrogen receptor β (ERβ), simultaneously reduced the expression of proinflammatory mediators (apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase1-p20), attenuated the infiltration of inflammatory cells, promoted autophagy of intestinal epithelial cells, inhibited the secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), modulated the gut microbiota, and ultimately alleviated colitis. In addition, the oral administration of these nanoparticles showed excellent safety, thereby providing confidence in the further development of precise treatments for IBD.
3. Reactive Oxygen Species-Sensitive Nanophotosensitizers of Methoxy Poly(ethylene glycol)-Chlorin e6/Phenyl Boronic Acid Pinacol Ester Conjugates Having Diselenide Linkages for Photodynamic Therapy of Cervical Cancer Cells
Ju-Il Yang, Hye-Lim Lee, Seon-Hee Choi, Jungsoo Kim, Young-Bob Yu, Young-Il Jeong, Dae-Hwan Kang Materials (Basel). 2021 Dec 25;15(1):138. doi: 10.3390/ma15010138.
The aim of this study is to fabricate nanophotosensitizers composed of methoxy poly(ethylene glycol) (mPEG), chlorin e6 (Ce6), and phenylboronic acid pinacol ester (PBAP) with diselenide linkages for reactive oxygen species (ROS)-sensitive photodynamic therapy (PDT) of cervical cancer cells. To fabricate nanophotosensitizers, Ce6 was conjugated with mPEG via selenocystamine linkage and then remaining carboxylic acid groups of Ce6 was attached to PBAP (mPEGseseCe6PBAP conjugates). Nanophotosensitizers of mPEGseseCe6PBAP conjugates were prepared by dialysis method. In transmission electron microscope (TEM) observation, nanophotosensitizers of mPEGseseCe6PBAP conjugates have spherical shapes and their diameters were less than 150 nm. The average diameter of mPEGseseCe6PBAP nanophotosensitizers was 92.7 ± 9.6 nm in particle size analysis. When H2O2 was added to the nanophotosensitizer solution, nanophotosensitizers were sensitively disintegrated according to the H2O2 concentration and then changed from monomodal distribution to multimodal distribution in particle size distribution. Furthermore, Ce6 release from nanophotosensitizers also increased according to the H2O2 concentration. When H2O2 was added to cell culture of HeLa human cervical cancer cells, intracellular Ce6 uptake of nanophotosensitizers were gradually increased according to the H2O2 concentration, indicating that nanophotosensitizers showed ROS-sensitive delivery of Ce6 against cancer cells.As well as free Ce6, nanophotosensitizers in the absence of light irradiation have low intrinsic cytotoxicity against RAW264.7 cells and HeLa cells. However, nanophotosensitizers induced cell death dose-dependently under light irradiation. Especially, nanophotosensitizers showed significantly higher ROS generation and phototoxicity against HeLa cells in vitro. When nanophotosensitizers were intravenously administered to animal tumor xenograft model of HeLa cells, tumor tissues revealed stronger fluorescence intensity than other tissues by light irradiation while absence of light irradiation induced relatively lower fluorescence intensity in tumor tissues, indicating that nanophotosensitizers have sensitivity against oxidative stress in tumor tissues. We suggest that nanophotosensitizers of mPEGseseCe6PBAP conjugates are promising vehicle for PDT of cervical cancer cells.
Online Inquiry
Verification code
Inquiry Basket