Need Assistance?
  • US & Canada:
    +
  • UK: +

Abaecin-like

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Abaecin-like is an antimicrobial peptide produced by Bombus impatiens (Bumblebee). It has antimicrobial activity.

Category
Functional Peptides
Catalog number
BAT-013197
Synonyms
Pro-Pro-Arg-Pro-Gly-Gln-Ser-Lys-Pro-Phe-Pro-Ser-Phe-Pro-Gly-His-Gly-Pro-Phe-Asn-Pro-Lys-Ile-Gln-Trp-Pro-Tyr-Pro-Leu-Pro-Asn-Pro-Gly-His
Purity
≥95%
Sequence
PPRPGQSKPFPSFPGHGPFNPKIQWPYPLPNPGH
Storage
Store at -20°C
1. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides
Bin Gao, Patrick Sherman, Lan Luo, John Bowie, Shunyi Zhu FASEB J. 2009 Apr;23(4):1230-45. doi: 10.1096/fj.08-122317. Epub 2008 Dec 16.
Both vertebrates and invertebrates employ alpha-helical antimicrobial peptides (AMPs) as an essential component of their innate immune system. However, evolutionary relation of these immune molecules remains unresolved. Venoms, as key weapons of venomous arthropods for prey and defense, receive increasing recognition as an emerging source of such peptides. From a cDNA library prepared from the venom gland of the scorpion Mesobuthus eupeus, clones encoding precursors of two new AMPs, named meucin-13 (IFGAIAGLLKNIF-NH(2)) and meucin-18 (FFGHLFKLATKIIPSLFQ), have been isolated. The precursor of meucins consists of a signal peptide, a mature peptide, and an acidic propeptide, in which dibasic residues as the typical processing signal are located between the mature and propeptide. Meucin-13 is an ortholog of several previously described AMPs from scorpion venom and has also detectable sequence similarity to temporins, a large family of AMPs from frog skin, whereas meucin-18 displays some similarity to AMPs from diverse origin including arthropod venoms, fish mast cells, and frog skins. These two meucin peptides form alpha-helical structure in the presence of 50% trifluoroethanol (TFE), a membrane-mimicking environment, as identified by circular dichroism (CD) spectroscopy. This finding is further verified by their NMR structures that show a typical alpha-helical amphipathic design, a structural prerequisite for cytolytic activity. Meucins exhibit extensive cytolytic effects on both prokaryotic and eukaryotic cells (gram(+) and gram(-) bacteria, fungi, yeasts, rabbit erythrocytes, and rat dorsal root ganglion cells) at micromolar concentrations. It is remarkable that muecin-18 was 2- to >14-fold more potent than meucin-13 against nearly all the cells tested. Structural differences in hydrophilic/hydrophobic balance and cationic amino acid location between two meucins could account for their differential potency. Despite these differences, commonalities at precursor organization, three-dimensional structure, and biological function suggests that meucins are two evolutionarily related AMPs and likely originated from a common ancestor by gene duplication. Our work presented here also provides new insights into an evolutionary link among AMPs from invertebrates and vertebrates and clues for evolutionary convergence between AMPs and virus fusion domains.
2. Novel antimicrobial peptides identified from an endoparasitic wasp cDNA library
Xiaojing Shen, Gongyin Ye, Xiongying Cheng, Chunyan Yu, Hongwei Yao, Cui Hu J Pept Sci. 2010 Jan;16(1):58-64. doi: 10.1002/psc.1195.
We screened an endoparasitic wasp (Pteromalus puparum) cDNA library for DNA sequences having antimicrobial activity using a vital dye exclusion assay. Two dozens of clones were isolated that inhibited the growth of host Escherichia coli cells due to expression of the cloned genes. Three peptides (PP13, PP102 and PP113) were synthesized chemically based on the amino acid sequences deduced from these clones and assayed for their antimicrobial activity. These peptides have net positive charges and are active against both Gram-negative and -positive bacteria, but are not active against fungi tested. Their hemolytic activity on human red blood cells was measured, and no hemolytic activity was observed after 1-h incubation at a concentration of 62.5 microM or below. A Blast search indicated that the three peptides have not been previously characterized as antimicrobial peptides (AMPs). Salt-dependency studies revealed that the biocidal activity of these peptides against E. coli decreased with increasing concentration of NaCl. Transmission electron microscopic (TEM) examination of PP13-treated E. coli cells showed extensive damage of cell membranes. The CD spectroscopy studies noted that the enhanced alpha-helical characteristics of PP13 strongly contribute to its higher antimicrobial properties. These results demonstrate the feasibility to identify novel AMPs by screening the expressional cDNA library.
3. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus
Seong Ryul Kim, Mee Yeon Hong, Seung Won Park, Kwang Ho Choi, Eun Young Yun, Tae Won Goo, Seok Woo Kang, Hwa Jin Suh, Iksoo Kim, Jae Sam Hwang Mol Cells. 2010 Apr;29(4):419-23. doi: 10.1007/s10059-010-0050-y. Epub 2010 Mar 4.
Cecropin is a well-studied antimicrobial peptide that is synthesized in fat body cells and hemocytes of insects in response to hypodermic injury or bacterial infection. A 503 bp cDNA encoding for a cecropin-like peptide was isolated by employing annealing control primer (ACP)-based differential display PCR and 5'-RACE with immunized Papilio xuthus larvae. The open reading frame of the isolated cDNA encoded for a 62-amino acid prepropeptide with a putative 22-residue signal peptide, a 2-residue propeptide, and a 38-residue mature peptide with a theoretical mass of 4060.89 Da. The deduced amino acid sequence of the peptide evidenced a significant degree of identity with other lepidopteran cecropins. This peptide was named papiliocin. RTPCR results revealed that the papiliocin transcript was detected at significant levels after injection with bacterial lipopolysaccharide (LPS). On the basis of the deduced amino acid sequence of papiliocin, a 38-mer mature peptide was chemically synthesized via the Fmoc method, and its antimicrobial activity was analyzed. The synthetic papiliocin peptide evidenced a broad spectrum of activity against fungi, Gram-positive and Gram-negative bacteria, and also evidenced no hemolytic activity against human red blood cells.
Online Inquiry
Verification code
Inquiry Basket