Ac-YVAD-CMK
Need Assistance?
  • US & Canada:
    +
  • UK: +

Ac-YVAD-CMK

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Ac-YVAD-CMK is a selective, irreversible inhibitor of interleukin-1β converting enzyme (ICE; Caspase-1). Ac-YVAD-CMK is neuroprotective in a rat model of cerebral ischemia.

Category
Peptide Inhibitors
Catalog number
BAT-010817
CAS number
178603-78-6
Molecular Formula
C24H33ClN4O8
Molecular Weight
541
Ac-YVAD-CMK
IUPAC Name
(3S)-3-[[(2S)-2-[[(2S)-2-[[(2S)-2-acetamido-3-(4-hydroxyphenyl)propanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-chloro-4-oxopentanoic acid
Synonyms
Caspase 1 Inhibitor II
Appearance
White to Off-white Solid
Purity
≥98%
Sequence
Ac-Tyr-Val-Ala-Asp-CH2Cl
Storage
Store at -20°C
Application
Cysteine Proteinase Inhibitors
InChI
InChI=1S/C24H33ClN4O8/c1-12(2)21(24(37)26-13(3)22(35)28-17(10-20(33)34)19(32)11-25)29-23(36)18(27-14(4)30)9-15-5-7-16(31)8-6-15/h5-8,12-13,17-18,21,31H,9-11H2,1-4H3,(H,26,37)(H,27,30)(H,28,35)(H,29,36)(H,33,34)/t13-,17-,18-,21-/m0/s1
InChI Key
UOUBHJRCKHLGFB-DGJUNBOTSA-N
Canonical SMILES
CC(C)C(C(=O)NC(C)C(=O)NC(CC(=O)O)C(=O)CCl)NC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C
1. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment
Shuling Peng, Zhi Wang, Ying Chen, Shiyu Meng, Lin Cao, Zhiyi Zuo J Neuroinflammation . 2018 Apr 17;15(1):109. doi: 10.1186/s12974-018-1137-1.
Background:Elderly patients are more likely to suffer from postoperative cognitive dysfunction (POCD) after surgery and anesthesia. Except for declined organ function, the particular pathogenesis of POCD in elderly patients remains unknown. This study is carried out to determine the critical role of the NOD-like receptor protein 3 (NLRP3)-caspase-1 pathway in isoflurane-induced cognitive impairment.Methods:Young (6-8 months old) and aged (14 months old) healthy male C57BL/6 mice were exposed to 1.5% isoflurane for 2 h. Some mice received intraperitoneal injection of Ac-YVAD-cmk (8 mg/kg), a specific inhibitor of caspase-1, 30 min before the isoflurane exposure. Morris water maze test was carried out 1 week after the isoflurane anesthesia. Brain tissues were harvested 24 h after the isoflurane anesthesia. Western blotting was carried out to detect the expression of NLRP3, interleukin (IL)-1β, and IL-18 in the hippocampus. Mouse microglial cell line BV-2 and primary microglial cultures were primed by lipopolysaccharide for 30 min before being exposed to isoflurane. NLRP3 was downregulated by RNA interference.Results:Compared to young mice, aged mice had an increased expression of NLRP3 in the hippocampus. Isoflurane induced cognitive impairment and hippocampal inflammation in aged mice but not in young mice. These effects were attenuated by Ac-YVAD-cmk pretreatment (P < 0.05). Isoflurane activated NLRP3-caspase-1 pathway and increased the secretion of IL-18 and IL-1β in cells pretreated with lipopolysaccharide but not in cells without pretreatment. Downregulation of NLRP3 attenuated the activation of NLRP3 inflammasome by isoflurane.Conclusions:NLRP3 priming status in aged mouse brain may be involved in isoflurane-induced hippocampal inflammation and cognitive impairment.
2. NLRP3/Caspase-1 Pathway-Induced Pyroptosis Mediated Cognitive Deficits in a Mouse Model of Sepsis-Associated Encephalopathy
Jing Wu, Qun Fu, Qing-Hong Mao, Xiao-Yan Zhou, Mu-Huo Ji, Man-Man Zong, Jian-Jun Yang, Zhi-Qiang Zhou, Qing Li Inflammation . 2019 Feb;42(1):306-318. doi: 10.1007/s10753-018-0894-4.
Sepsis-associated encephalopathy (SAE) is a common complication that leads to long-term cognitive impairments and increased mortality in sepsis survivors. The mechanisms underlying this complication remain unclear and an effective intervention is lacking. Accumulating evidence suggests the nucleotide-binding domain-like receptor protein3 (NLRP3)/caspase-1 pathway is involved in several neurodegenerative diseases. Thus, we hypothesized that the NLRP3/caspase-1 pathway is involved in NLRP3-mediated pyroptosis, maturation and release of inflammatory cytokines, and cognitive deficits in SAE. We used the NLRP3 inhibitor MCC950 and the caspase-1 inhibitor Ac-YVAD-CMK to study the role of the NLRP3/caspase-1 pathway in pyroptosis and cognitive deficits in a mouse model of SAE. Mice were randomly assigned to one of six groups: sham+saline, sham+MCC950, sham+Ac-YVAD-CMK, cecal ligation and puncture (CLP)+saline, CLP+MCC950, and CLP+Ac-YVAD-CMK. Surviving mice underwent behavioral tests or had hippocampal tissues collected for histochemical analysis and biochemical assays. Our results show that CLP-induced hippocampus-dependent memory deficits are accompanied by increased NLRP3 and caspase-1 positive cells, and augmented protein levels of NLRP3, caspase-1, gasdermin-D, and pro-inflammatory cytokines in the hippocampus. In addition, administration of MCC950 or Ac-YVAD-CMK rescues cognitive deficits and ameliorates increased hippocampal NLRP3-mediated neuronal pyroptosis and pro-inflammatory cytokines. Our results suggest that the NLRP3/caspase-1 pathway-induced pyroptosis mediates cognitive deficits in a mouse model of SAE.
3. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice
Yong-Il Shin, Seo-Yeon Lee, Hyunha Kim, Young Ju Yun, Ki-Tae Ha, Ji Seon Seo, Hwa Kyoung Shin, Byung Tae Choi Brain Behav Immun . 2020 Jul;87:765-776. doi: 10.1016/j.bbi.2020.03.011.
Although over one-third of stroke patients may develop post-stroke cognitive impairment (PSCI), the mechanisms underlying PSCI remain unclear. We explored here, the involvement of post-stroke inflammasomes in long-term PSCI development, using a 45 min-middle cerebral artery occlusion (MCAO)/reperfusion-induced PSCI model. Immunohistological assessment on day 1, 3, and 7 was followed by cognitive function test 28 days post-stroke. Evaluation of inflammasome sensor gene expression in aged mouse brains showed dominant expression of absent in melanoma 2 (Aim2) in 6-, 12-, and 18-month-old mouse brains. AIM2 mRNA and protein increased until 7 days post-stroke. PSCI decreased anxiety in elevated plus maze test and impaired spatial learning and memory functions in Morris water maze test 28 days post-stroke. AIM2 and other inflammasome subunit immunoreactivities, including those for caspase-1, interleukin (IL)-1β, and IL-18, were higher in the hippocampus and cortex of the PSCI than in those of the sham group 7 days post-stroke. AIM2 immunoreactivity of the PSCI group was primarily co-localized with Iba-1 (microglial marker) and CD31 (endothelial cell marker) immunoreactivities but not NeuN (neuronal marker) and GFAP (astrocyte marker) immunoreactivities, suggesting that microglia or endothelial cell-induced AIM2 production mediated PSCI pathogenesis. Additionally, inflammasome-induced pyroptosis might contribute to acute and chronic neuronal death after stroke. AIM2 knockout (KO) and Ac-YVAD-CMK-induced caspase-1 inhibition in mice significantly improved cognitive function and reversed brain volume in the hippocampus relative to those in stroke mice. Conclusively, AIM2 inflammasome-mediated inflammation and pyroptosis likely aggravated PSCI; therefore, targeting and controlling AIM2 inflammasome could potentially treat PSCI.
Online Inquiry
Verification code
Inquiry Basket