Adipotide
Need Assistance?
  • US & Canada:
    +
  • UK: +

Adipotide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Adipotide is a peptide drug candidate under clinical trials for the treatment of obesity.

Category
Peptide Inhibitors
Catalog number
BAT-006252
Molecular Formula
C111H204N36O28S2
Molecular Weight
2555.22
Adipotide
Size Price Stock Quantity
5 mg $319 In stock
Synonyms
Prohibitin-targeting peptide 1; prohibitin-TP01; TP01
Purity
98%
Sequence
CKGGRAKDC-GG-(D)(KLAKLAK)(2)
1. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes
Geetanjali Sharma, et al. Sci Transl Med. 2020 Jan 29;12(528):eaau5956. doi: 10.1126/scitranslmed.aau5956.
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
2. A comparative study between nanoparticle-targeted therapeutics and bioconjugates as obesity medication
Nazir Hossen, Kazuaki Kajimoto, Hidetaka Akita, Mamoru Hyodo, Hideyoshi Harashima J Control Release. 2013 Oct 28;171(2):104-12. doi: 10.1016/j.jconrel.2013.07.013. Epub 2013 Jul 18.
Antiangiogenesis has been the focus of a new strategy for the treatment of obesity. However, little is known regarding the issue of whether targeting angiogenesis by nanoparticle-targeted therapeutic is advantageous or not in debugging the co-morbidity associated with diet-induced obesity (DIO) and the metabolic syndrome. We report herein on the positive effect of prohibitin (an adipose vascular marker)-targeted nanoparticle (PTNP) encapsulated in a proapoptotic peptide [(D)(KLAKLAK)₂, KLA] on DIO and dysfunctional adipose tissue, a major mediator of the metabolic syndrome, as evidenced by ectopic fat deposition. The systemic injection of DIO mice with a low dose of KLA-PTNP, rather than a bioconjugate composed of the same targeting peptide and KLA (Adipotide) resulted in a reduction in body weight, as evidenced by a significant decrease in serum leptin levels, in parallel with an antiobesity effect on dysfunctional adipose cells, including adipocytes and macrophages. In addition, the KLA-PTNP treatment resulted in a reduction in ectopic fat deposits in liver and muscle with the lipolytic action of elevated serum adiponectin, with no detectable hepatoxicity. Notably, drug delivery via PTNP that had accumulated in obese fat via the enhanced permeability and retention effect was enhanced by multivalent active targeting and cytoplasmic delivery into adipose endothelial cells via escaping from endosomes/lysosomes. Thus, vascular-targeted nanotherapy has the potential to contribute to the control of adipose function and ectopic fat deposition associated with obesity and the metabolic syndrome.
3. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys
Kirstin F Barnhart, et al. Sci Transl Med. 2011 Nov 9;3(108):108ra112. doi: 10.1126/scitranslmed.3002621.
Obesity, defined as body mass index greater than 30, is a leading cause of morbidity and mortality and a financial burden worldwide. Despite significant efforts in the past decade, very few drugs have been successfully developed for the treatment of obese patients. Biological differences between rodents and primates are a major hurdle for translation of anti-obesity strategies either discovered or developed in rodents into effective human therapeutics. Here, we evaluate the ligand-directed peptidomimetic CKGGRAKDC-GG-(D)(KLAKLAK)(2) (henceforth termed adipotide) in obese Old World monkeys. Treatment with adipotide induced targeted apoptosis within blood vessels of white adipose tissue and resulted in rapid weight loss and improved insulin resistance in obese monkeys. Magnetic resonance imaging and dual-energy x-ray absorptiometry confirmed a marked reduction in white adipose tissue. At experimentally determined optimal doses, monkeys from three different species displayed predictable and reversible changes in renal proximal tubule function. Together, these data in primates establish adipotide as a prototype in a new class of candidate drugs that may be useful for treating obesity in humans.
Online Inquiry
Verification code
Inquiry Basket