Adrenomedullin (AM) (22-52), human
Need Assistance?
  • US & Canada:
    +
  • UK: +

Adrenomedullin (AM) (22-52), human

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Adrenomedullin (AM) (22-52), human, an adrenomedullin analogue with NH2 terminus truncation, is an adrenomedullin receptor antagonist that also antagonizes calcitonin-generating peptide (CGRP) receptors in the vascular bed of the hindlimb of cats.

Category
Peptide Inhibitors
Catalog number
BAT-010432
CAS number
159899-65-7
Molecular Formula
C159H252N46O48
Molecular Weight
3575.97
Adrenomedullin (AM) (22-52), human
IUPAC Name
(3S)-3-[[(2S)-6-amino-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]-3-methylbutanoyl]amino]-5-oxopentanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-carboxypropanoyl]amino]hexanoyl]amino]-4-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S,3S)-1-[[(2S)-1-[(2S)-2-[[(2S)-5-amino-1-[[2-[[(2S)-1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1,5-dioxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-oxobutanoic acid
Synonyms
22-52-Adrenomedullin (human); Thr-Val-Gln-Lys-Leu-Ala-His-Gln-Ile-Tyr-Gln-Phe-Thr-Asp-Lys-Asp-Lys-Asp-Asn-Val-Ala-Pro-Arg-Ser-Lys-Ile-Ser-Pro-Gln-Gly-Tyr-NH2; L-threonyl-L-valyl-L-glutaminyl-L-lysyl-L-leucyl-L-alanyl-L-histidyl-L-glutaminyl-L-isoleucyl-L-tyrosyl-L-glutaminyl-L-phenylalanyl-L-threonyl-L-alpha-aspartyl-L-lysyl-L-alpha-aspartyl-L-lysyl-L-alpha-aspartyl-L-asparagyl-L-valyl-L-alanyl-L-prolyl-L-arginyl-L-seryl-L-lysyl-L-isoleucyl-L-seryl-L-prolyl-L-glutaminyl-glycyl-L-tyrosinamide
Appearance
White or Off-white Lyophilized Powder
Purity
≥95%
Sequence
TVQKLAHQIYQFTDKDKDNVAPRSKISPQGY-NH2
Storage
Store in a cool and dry place and at 2-8°C for short term (days to weeks) or store at -20°C for long term (months to years)
Solubility
Soluble in Water
InChI
InChI=1S/C159H252N46O48/c1-15-80(9)126(202-139(234)100(51-55-117(167)215)185-142(237)105(67-89-72-173-76-176-89)189-130(225)82(11)177-140(235)102(63-77(3)4)190-132(227)92(33-20-24-56-160)180-136(231)99(50-54-116(166)214)188-153(248)125(79(7)8)200-151(246)123(169)84(13)208)154(249)195-103(66-88-42-46-91(211)47-43-88)141(236)184-98(49-53-115(165)213)137(232)191-104(65-86-31-18-17-19-32-86)146(241)203-128(85(14)209)156(251)196-109(71-122(222)223)144(239)182-94(35-22-26-58-162)133(228)193-107(69-120(218)219)143(238)181-93(34-21-25-57-161)134(229)194-108(70-121(220)221)145(240)192-106(68-118(168)216)147(242)199-124(78(5)6)152(247)178-83(12)157(252)204-61-29-38-112(204)149(244)186-96(37-28-60-174-159(171)172)135(230)197-110(74-206)148(243)183-95(36-23-27-59-163)138(233)201-127(81(10)16-2)155(250)198-111(75-207)158(253)205-62-30-39-113(205)150(245)187-97(48-52-114(164)212)131(226)175-73-119(217)179-101(129(170)224)64-87-40-44-90(210)45-41-87/h17-19,31-32,40-47,72,76-85,92-113,123-128,206-211H,15-16,20-30,33-39,48-71,73-75,160-163,169H2,1-14H3,(H2,164,212)(H2,165,213)(H2,166,214)(H2,167,215)(H2,168,216)(H2,170,224)(H,173,176)(H,175,226)(H,177,235)(H,178,247)(H,179,217)(H,180,231)(H,181,238)(H,182,239)(H,183,243)(H,184,236)(H,185,237)(H,186,244)(H,187,245)(H,188,248)(H,189,225)(H,190,227)(H,191,232)(H,192,240)(H,193,228)(H,194,229)(H,195,249)(H,196,251)(H,197,230)(H,198,250)(H,199,242)(H,200,246)(H,201,233)(H,202,234)(H,203,241)(H,218,219)(H,220,221)(H,222,223)(H4,171,172,174)/t80-,81-,82-,83-,84+,85+,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,123-,124-,125-,126-,127-,128-/m0/s1
InChI Key
ZLCRXNXPYINVTB-MUIJALJFSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCC(=O)N)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(C(C)O)C(=O)NC(CC(=O)O)C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CC(=O)N)C(=O)NC(C(C)C)C(=O)NC(C)C(=O)N3CCCC3C(=O)NC(CCCNC(=N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(CO)C(=O)N4CCCC4C(=O)NC(CCC(=O)N)C(=O)NCC(=O)NC(CC5=CC=C(C=C5)O)C(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(CC6=CNC=N6)NC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(C(C)O)N
1. Adrenomedullin receptors: pharmacological features and possible pathophysiological roles
Kazuo Kitamura, Yuan-Ning Cao, Kenji Kuwasako, Tanenao Eto, Yasuko Nagoshi Peptides . 2004 Nov;25(11):2003-12. doi: 10.1016/j.peptides.2004.06.002.
Three receptor activity modifying proteins (RAMPs) chaperone calcitonin-like receptor (CLR) to the cell surface. RAMP2 enables CLR to form an adrenomedullin (AM)-specific receptor that is sensitive to AM-(22-52) (AM(1) receptor). RAMP3 enables CLR to form an AM receptor sensitive to both calcitonin gene-related peptide (CGRP)-(8-37) and AM-(22-52) (AM(2) receptor), though rat and mouse AM(2) receptors show a clear preference for CGRP alpha-(8-37) over AM-(22-52). RAMP1 enables CRL to form the CGRP-(8-37)-sensitive CGRP(1) receptor, which can also be activated by higher concentrations of AM. Here we review the available information on the pharmacological features and possible pathophysiological roles of the aforementioned AM receptors.
2. Angiogenic effects of adrenomedullin in ischemia and tumor growth
Pei Niu, Ryozo Nagai, Toshihiro Amaki, Norifumi Takeda, Takayuki Shindo, Yuelan Zhang, Aya Ebihara, Nobuo Moriyama, Satoshi Iimuro, Hiroshi Iwata Circ Res . 2004 Aug 20;95(4):415-23. doi: 10.1161/01.RES.0000138018.61065.d1.
Adrenomedullin (AM) is a novel vasodilating peptide involved in the regulation of circulatory homeostasis and implicated in the pathophysiology of cardiovascular disease. We tested the hypothesis that AM also possesses angiogenic properties. Using laser Doppler perfusion imaging, we found that AM stimulated recovery of blood flow to the affected limb in the mouse hind-limb ischemia model. AM exerted this effect in part by promoting expression of vascular endothelial growth factor (VEGF) in the ischemic limb, and immunostaining for CD31 showed the enhanced flow to reflect increased collateral capillary density. By enhancing tumor angiogenesis, AM also promoted the growth of subcutaneously transplanted sarcoma 180 tumor cells. However, heterozygotic AM knockout mice (AM+/-) showed significantly less blood flow recovery with less collateral capillary development and VEGF expression than their wild-type littermates. Similarly, mice treated with AM22-52, a competitive inhibitor of AM, showed reduced capillary development, and growth of sarcoma 180 tumors was inhibited in AM+/- and AM22-52-treated mice. Notably, administration of VEGF or AM rescued blood flow recovery and capillary formation in AM+/- and AM22-52-treated mice. In cocultures of endothelial cells and fibroblasts, AM enhanced VEGF-induced capillary formation, whereas in cultures of endothelial cells AM enhanced VEGF-induced Akt activation. These results show that AM possesses novel angiogenic properties mediated by its ability to enhance VEGF expression and Akt activity. This may make AM a useful therapeutic tool for relieving ischemia; conversely, inhibitors of AM could be useful for clinical management of tumor growth.
3. SPECT imaging of pulmonary vascular disease in bleomycin-induced lung fibrosis using a vascular endothelium tracer
Alexandre Bergeron, Martin Sirois, Vincent Finnerty, YanFen Shi, Quang T Nguyen, Angelino Calderone, Emmanuelle Brochiero, Mohamed J Nsaibia, Arielle Morgan, François Harel, Louis Villeneuve, Jocelyn Dupuis, Jean-Claude Tardif Respir Res . 2021 Sep 4;22(1):240. doi: 10.1186/s12931-021-01836-3.
Background:Pulmonary hypertension (PH) complicating idiopathic pulmonary fibrosis (IPF) is associated to worse outcome. There is a great need for a non-invasive diagnostic modality to detect and evaluate the severity of pulmonary vascular disease (PVD).99mTc-PulmoBind is a novel imaging agent that binds to the adrenomedullin (AM) receptor on the pulmonary microvascular endothelium. SPECT imaging employing the endothelial cell tracer99mTc-PulmoBind was used to assess PVD associated with lung fibrosis.Methods:Rats with selective right lung bleomycin-induced fibrosis were compared to control rats. SPECT imaging was performed after three weeks with99mTc-PulmoBind and99mTc-macroaggregates of albumin (MAA). PH and right ventricular (RV) function were assessed by echocardiography. Lung perfusion was evaluated by fluorescent microangiography. Lung AM receptor expression was measured by qPCR and by immunohistology. Relevance to human IPF was explored by measuring AM receptor expression in lung biopsies from IPF patients and healthy controls.Results:The bleomycin group developed preferential right lung fibrosis with remodeling and reduced perfusion as assessed with fluorescent microangiography. These rats developed PH with RV hypertrophy and dysfunction.99mTc-PulmoBind uptake was selectively reduced by 50% in the right lung and associated with reduced AM receptor expression, PH and RV hypertrophy. AM receptor was co-expressed with the endothelial cell protein CD31 in alveolar capillaries, and markedly reduced after bleomycin. Quantitative dynamic analysis of99mTc-PulmoBind uptake in comparison to99mTc-MAA revealed that the latter distributed only according to flow, with about 60% increased left lung uptake while left lung uptake of99mTc-PulmoBind was not affected. Lung from human IPF patients showed important reduction in AM receptor expression closely associated with CD31.Conclusions:SPECT imaging with99mTc-PulmoBind detects PVD and its severity in bleomycin-induced lung fibrosis. Reduced AM receptor expression in human IPF supports further clinical development of this imaging approach.
Online Inquiry
Verification code
Inquiry Basket