alpha-Endorphin
Need Assistance?
  • US & Canada:
    +
  • UK: +

alpha-Endorphin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

α-Endorphin is an endogenous neuropeptide that binds to opioid receptors.

Category
Peptide Inhibitors
Catalog number
BAT-010157
CAS number
59004-96-5
Molecular Formula
C77H120N18O26S
Molecular Weight
1745.95
alpha-Endorphin
IUPAC Name
(4S)-5-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S,3R)-1-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxobutan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoic acid
Alternative CAS
61512-76-3
Synonyms
Endorphin, Alpha; Lipotropin 61-76; A-Endorphin
Appearance
Powder
Purity
≥95%
Sequence
YGGFMTSEKSQTPLVT
Storage
Store at -20°C
Solubility
Soluble in DMSO
Application
Neurotransmitter Agents
InChI
InChI=1S/C77H120N18O26S/c1-38(2)31-51(70(113)91-60(39(3)4)74(117)94-63(42(7)100)77(120)121)88-73(116)55-18-14-29-95(55)76(119)62(41(6)99)93-67(110)48(23-25-56(80)102)85-71(114)53(36-96)89-65(108)47(17-12-13-28-78)84-66(109)49(24-26-59(105)106)86-72(115)54(37-97)90-75(118)61(40(5)98)92-68(111)50(27-30-122-8)87-69(112)52(33-43-15-10-9-11-16-43)83-58(104)35-81-57(103)34-82-64(107)46(79)32-44-19-21-45(101)22-20-44/h9-11,15-16,19-22,38-42,46-55,60-63,96-101H,12-14,17-18,23-37,78-79H2,1-8H3,(H2,80,102)(H,81,103)(H,82,107)(H,83,104)(H,84,109)(H,85,114)(H,86,115)(H,87,112)(H,88,116)(H,89,108)(H,90,118)(H,91,113)(H,92,111)(H,93,110)(H,94,117)(H,105,106)(H,120,121)/t40-,41-,42-,46+,47+,48+,49+,50+,51+,52+,53+,54+,55+,60+,61+,62+,63+/m1/s1
InChI Key
NXSIJWJXMWBCBX-NWKQFZAZSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)O)NC(=O)C1CCCN1C(=O)C(C(C)O)NC(=O)C(CCC(=O)N)NC(=O)C(CO)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CCSC)NC(=O)C(CC2=CC=CC=C2)NC(=O)CNC(=O)CNC(=O)C(CC3=CC=C(C=C3)O)N
1. Characterization of beta-endorphin- and alpha-MSH-related peptides in rat heart
L J Forman, W R Millington, V R Evans, C N Battie Peptides . 1993 Nov-Dec;14(6):1141-7. doi: 10.1016/0196-9781(93)90167-f.
POMC-derived peptides and mRNA have been identified in heart tissue, although POMC processing has not been fully characterized. In the present study, we found that beta-lipotropin and ACTH were localized in rat heart, although they were almost entirely converted to beta-endorphin- and alpha-MSH-related peptides. Ion exchange HPLC analysis revealed that beta-endorphin(1-31) was further processed to alpha-N-acetyl-beta-endorphin(1-31), which comprised 35.9 +/- 0.1% of total immunoreactivity, and smaller amounts of beta-endorphin(1-27), beta-endorphin(1-26), and their alpha-N-acetylated derivates. The predominant alpha-MSH immunoreactive peptides coeluted with alpha-MSH and N,O-diacetyl-alpha-MSH by reverse-phase HPLC, although small amounts of ACTH(1-13)-NH2 were also present. Thus, multiple forms of beta-endorphin and alpha-MSH are localized in rat heart. beta-Endorphin(1-31) is a minor constituent, however, indicating that nonopioid beta-endorphin peptides predominate.
2. Isolation and characterization of alpha-endorphin and gamma-endorphin from single human pituitary glands
J P Burbach, V M Wiegant FEBS Lett . 1984 Jan 30;166(2):267-72. doi: 10.1016/0014-5793(84)80093-9.
alpha-Endorphin and gamma-endorphin, two closely related peptides of the pro-opiomelanocortin family with characteristic biological activities, were purified to homogeneity from single human pituitary glands and chemically identified. Isolation of the peptides was based on size fractionation by Sephadex G-75 chromatography followed by two HPLC steps using reverse-phase and paired-ion reverse-phase systems and was monitored by radioimmunoassay. During the isolation procedure alpha- and gamma-endorphin-sized material behaved chromatographically and immunologically indistinguishably from synthetic alpha- and gamma-endorphin. The amino acid composition and NH2-terminus of isolated peptides demonstrated their identity as authentic alpha-endorphin and gamma-endorphin. Acetylated forms were absent. In addition, evidence is provided that large forms with alpha- and gamma-endorphin immunoreactivity detected during gel filtration are human lipotropin-(1-74) and -(1-75), respectively. The data substantiate that alpha-endorphin and gamma-endorphin exist as endogenous peptides in the human pituitary gland.
3. Distribution of alpha-neoendorphin, ACTH (18-39) and beta-endorphin (1-27) in the alpaca brainstem
Manuel L Sánchez, Eliana de Souza, Luis A Aguilar, Rafael Coveñas Anat Histol Embryol . 2018 Oct;47(5):481-492. doi: 10.1111/ahe.12387.
Using an immunocytochemical technique, we have studied in the alpaca brainstem the distribution of immunoreactive structures containing prodynorphin (alpha-neoendorphin)- and pro-opiomelanocortin (adrenocorticotrophin hormone (18-39) (ACTH), beta-endorphin (1-27))-derived peptides. No peptidergic-immunoreactive cell body was observed. Immunoreactive fibres were widely distributed, although in most of the brainstem nuclei the density of the peptidergic fibres was low or very low. In general, the distribution of the immunoreactive fibres containing the peptides studied was very similar. A close anatomical relationship occurred among the fibres containing alpha-neoendorphin, ACTH or beta-endorphin (1-27), suggesting a functional interaction among the three peptides in many of the brainstem nuclei. The number of fibres belonging to the prodynorphin system was higher than that of the pro-opiomelanocortin system. A moderate/low density of immunoreactive fibres was observed in 65.11% (for alpha-neoendorphin (1-27)), 18.18% (for ACTH) and 13.95% (for beta-endorphin) of the brainstem nuclei/tracts. In the alpaca brainstem, a high density of immunoreactive fibres was not observed. The neuroanatomical distribution of the immunoreactive fibres suggests that the peptides studied are involved in auditory, motor, gastric, feeding, vigilance, stress, respiratory and cardiovascular mechanisms, taste response, sleep-waking cycle and the control of pain transmission.
Online Inquiry
Verification code
Inquiry Basket