Amyloid β-peptide (42-1) human
Need Assistance?
  • US & Canada:
    +
  • UK: +

Amyloid β-peptide (42-1) human

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Amyloid β-peptide (42-1) (human), is the predominant form of amyloid β-peptide found in the brains of patients with Alzheimer's disease.

Category
Peptide Inhibitors
Catalog number
BAT-010439
CAS number
317366-82-8
Molecular Formula
C203H311N55O60S
Molecular Weight
4514.04
Amyloid β-peptide (42-1) human
Size Price Stock Quantity
10 mg $1290 In stock
100 mg $2790 In stock
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-6-amino-2-[[2-[[(2S)-2-[[(2S,3S)-2-[[(2S,3S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-aminopropanoyl]amino]-3-methylpentanoyl]amino]-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]acetyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]propanoyl]amino]acetyl]amino]hexanoyl]amino]-4-oxobutanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]propanoyl]amino]-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]amino]-5-oxopentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-methylbutanoyl]amino]-4-carboxybutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-phenylpropanoyl]amino]-4-carboxybutanoyl]amino]propanoyl]amino]butanedioic acid
Synonyms
H-Ala-Ile-Val-Val-Gly-Gly-Val-Met-Leu-Gly-Ile-Ile-Ala-Gly-Lys-Asn-Ser-Gly-Val-Asp-Glu-Ala-Phe-Phe-Val-Leu-Lys-Gln-His-His-Val-Glu-Tyr-Gly-Ser-Asp-His-Arg-Phe-Glu-Ala-Asp-OH; L-alanyl-L-isoleucyl-L-valyl-L-valyl-glycyl-glycyl-L-valyl-L-methionyl-L-leucyl-glycyl-L-isoleucyl-L-isoleucyl-L-alanyl-glycyl-L-lysyl-L-asparagyl-L-seryl-glycyl-L-valyl-L-alpha-aspartyl-L-alpha-glutamyl-L-alanyl-L-phenylalanyl-L-phenylalanyl-L-valyl-L-leucyl-L-lysyl-L-glutaminyl-L-histidyl-L-histidyl-L-valyl-L-alpha-glutamyl-L-tyrosyl-glycyl-L-seryl-L-alpha-aspartyl-L-histidyl-L-arginyl-L-phenylalanyl-L-alpha-glutamyl-L-alanyl-L-aspartic acid; Amyloid beta (42-1) human; Amyloid b-Protein (42-1)
Appearance
White lyophilised solid
Purity
≥95%
Sequence
AIVVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEAD
Storage
Store at -20°C
Solubility
Soluble in Water
Application
Implicated in Alzheimer's disease
InChI
InChI=1S/C203H311N55O60S/c1-28-106(20)164(252-151(269)92-218-171(286)129(71-98(4)5)237-181(296)128(66-70-319-27)235-194(309)159(101(10)11)250-149(267)88-215-146(264)87-220-193(308)158(100(8)9)255-198(313)163(105(18)19)256-201(316)166(108(22)30-3)257-167(282)109(23)206)200(315)258-165(107(21)29-2)199(314)226-110(24)168(283)216-89-147(265)227-121(51-40-42-67-204)176(291)244-138(80-145(208)263)187(302)249-142(93-259)173(288)219-91-150(268)251-160(102(12)13)195(310)247-140(82-156(278)279)188(303)233-126(60-64-153(272)273)175(290)224-111(25)169(284)236-132(73-113-45-34-31-35-46-113)184(299)240-134(75-115-49-38-33-39-50-115)190(305)253-162(104(16)17)197(312)246-130(72-99(6)7)182(297)229-122(52-41-43-68-205)177(292)231-124(58-62-144(207)262)179(294)241-136(78-118-85-212-96-222-118)186(301)243-137(79-119-86-213-97-223-119)191(306)254-161(103(14)15)196(311)234-127(61-65-154(274)275)180(295)238-131(76-116-54-56-120(261)57-55-116)172(287)217-90-148(266)228-143(94-260)192(307)245-139(81-155(276)277)189(304)242-135(77-117-84-211-95-221-117)185(300)230-123(53-44-69-214-203(209)210)178(293)239-133(74-114-47-36-32-37-48-114)183(298)232-125(59-63-152(270)271)174(289)225-112(26)170(285)248-141(202(317)318)83-157(280)281/h31-39,45-50,54-57,84-86,95-112,121-143,158-166,259-261H,28-30,40-44,51-53,58-83,87-94,204-206H2,1-27H3,(H2,207,262)(H2,208,263)(H,211,221)(H,212,222)(H,213,223)(H,215,264)(H,216,283)(H,217,287)(H,218,286)(H,219,288)(H,220,308)(H,224,290)(H,225,289)(H,226,314)(H,227,265)(H,228,266)(H,229,297)(H,230,300)(H,231,292)(H,232,298)(H,233,303)(H,234,311)(H,235,309)(H,236,284)(H,237,296)(H,238,295)(H,239,293)(H,240,299)(H,241,294)(H,242,304)(H,243,301)(H,244,291)(H,245,307)(H,246,312)(H,247,310)(H,248,285)(H,249,302)(H,250,267)(H,251,268)(H,252,269)(H,253,305)(H,254,306)(H,255,313)(H,256,316)(H,257,282)(H,258,315)(H,270,271)(H,272,273)(H,274,275)(H,276,277)(H,278,279)(H,280,281)(H,317,318)(H4,209,210,214)/t106-,107-,108-,109-,110-,111-,112-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,142-,143-,158-,159-,160-,161-,162-,163-,164-,165-,166-/m0/s1
InChI Key
QBEAMNLSDYIUGM-SIQRNXPUSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C(C)CC)C(=O)NC(C)C(=O)NCC(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(CO)C(=O)NCC(=O)NC(C(C)C)C(=O)NC(CC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)N)C(=O)NC(CC3=CNC=N3)C(=O)NC(CC4=CNC=N4)C(=O)NC(C(C)C)C(=O)NC(CCC(=O)O)C(=O)NC(CC5=CC=C(C=C5)O)C(=O)NCC(=O)NC(CO)C(=O)NC(CC(=O)O)C(=O)NC(CC6=CNC=N6)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC7=CC=CC=C7)C(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(CC(=O)O)C(=O)O)NC(=O)CNC(=O)C(CC(C)C)NC(=O)C(CCSC)NC(=O)C(C(C)C)NC(=O)CNC(=O)CNC(=O)C(C(C)C)NC(=O)C(C(C)C)NC(=O)C(C(C)CC)NC(=O)C(C)N
1. In vitro and in vivo oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42)
D A Butterfield, S Varadarajan, C D Link, S M Yatin Neurobiol Aging . 1999 May-Jun;20(3):325-30; discussion 339-42. doi: 10.1016/s0197-4580(99)00056-1.
The amyloid beta-peptide (A beta)-associated free radical oxidative stress model for neuronal death in Alzheimer's disease (AD) brain predicts that neuronal protein oxidation is a consequence of A beta-associated free radicals [8]. In this study we have used both in vitro and in vivo models of beta-amyloid (A beta) toxicity to detect free radical induced oxidative stress by the measure of protein carbonyl levels. These model systems employed cultured hippocampal neurons exposed to exogenous synthetic A beta(1-42) and transgenic Caenorhabditis elegans (C. elegans) animals expressing A beta(1-42). We also investigated the importance of the A beta(1-42) Met35 residue for free radical formation in peptide solution and for peptide-induced protein oxidation and neuronal toxicity in these model systems. A beta(1-42) in solution yielded an EPR spectrum, suggesting that free radicals are associated with this peptide; however, neither the reverse [A beta(42-1)] nor methionine-substituted peptide [A beta(1-42)Met35Nlc] gave significant EPR spectra, suggesting the importance of the methionine residue in free radical formation. A beta(1-42) addition to cultured hippocampal neurons led to both neurotoxicity (30.1% cell death, p < 0.001) and increased protein oxidation (158% of controls, p < 0.001). and both of those effects were not observed with reverse or Met35Nle substituted peptides. C. elegans transgenic animals expressing human A beta(1-42) also had significantly increased in vivo protein carbonyls (176% of control animals, p < 0.001), consistent with our model. In contrast, transgenic animals with a Met35cys substitution in A beta(1-42) showed no increased protein carbonyls in vivo, in support of the hypothesis that methionine is important in A beta-associated free radical oxidative stress. These results are discussed with reference to the A beta-associated free radical oxidative stress model of neurotoxicity in AD brain.
2. The membrane-active amphibian peptide caerin 1.8 inhibits fibril formation of amyloid β1-42
Antonio N Calabrese, John A Carver, John H Bowie, Tianfang Wang, Scott F Cummins, Yanqin Liu Peptides . 2015 Nov;73:1-6. doi: 10.1016/j.peptides.2015.08.004.
The amphibian host-defense peptide caerin 1.8 [(1)GLFKVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] inhibits fibril formation of amyloid β 1-42 [(1)DAEFRHDSG(10)YEVHHQKLVF(20)FAEDVGSNKG(30)AIIGLMVGGV(40)VIA] [Aβ42] (the major precursor of the extracellular fibrillar deposits of Alzheimer's disease). Some truncated forms of caerin 1.8 also inhibit fibril formation of Aβ42. For example, caerin 1.8 (1-13) [(1)GLFKVLGSV(10)AKHL(NH2) and caerin 1.8 (22-25) [KVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] show 85% and 75% respectively of the inhibition activity of the parent caerin 1.8. The synthetic peptide KLVFFKKKKKK is a known inhibitor of Aβ42 fibril formation, and was used as a standard in this study. Caerin 1.8 is the more effective fibril inhibitor. IC50 values (± 15%) are caerin 1.8 (75 μM) and KLVFFKKKKKK (370 μM). MALDI mass spectrometry shows the presence of a small peak corresponding to a protonated 1:1 adduct [caerin 1.8/Aβ42]H(+). Molecular dynamics simulation suggests that both hydrogen bonding and hydrophobic interactions between Aβ42 and caerin 1.8 facilitate the formation of a 1:1 complex in water. Fibril formation from Aβ42 has been proposed to be based around the (16)KLVF(20)F region of Aβ42; this region in the 1:1 complex is partially blocked from attachment of a further molecule of Aβ42.
3. Amyloid beta(1-42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors
Francesca Grassi, Mascia Amici, Eleonora Palma, Marc Ballivet, Fabrizio Eusebi, Raffaella Tonini J Physiol . 2003 Feb 15;547(Pt 1):147-57. doi: 10.1113/jphysiol.2002.035436.
The beta-amyloid(1-42) peptide (Abeta(1-42)), a major constituent of the Alzheimer's disease amyloid plaque, specifically binds to the neuronal alpha-bungarotoxin (alpha-BuTx)-sensitive alpha7 nicotinic acetylcholine receptor (alpha7 nAChR). Accordingly, Abeta1-42 interferes with the function of alpha7 nAChRs in chick and rodent neurons. To gain insights into the human disease, we studied the action of Abeta(1-42) on human alpha7 nAChRs expressed in Xenopus oocytes. In voltage-clamped oocytes expressing the wild-type receptor, Abeta(1-42) blocked ACh-evoked currents. The block was non-competitive, required over 100 s to develop and was partially reversible. In oocytes expressing the mutant L248T receptor, Abeta(1-42) activated methyllycaconitine-sensitive currents in a dose-dependent manner. Peptide-evoked unitary events, recorded in outside-out patches, showed single-channel conductances and open duration comparable to ACh-evoked events. Abeta(1-42) had no effect on the currents evoked by glutamate, GABA or glycine in oocytes expressing human or mouse receptors for these transmitters. Muscle nAChRs are also alpha-BuTx-sensitive and we therefore investigated whether they respond to Abeta(1-42). In human kidney BOSC 23 cells expressing the fetal or adult mouse muscle nAChRs, Abeta(1-42) blocked ACh-evoked whole-cell currents, accelerating their decay. Outside-out single-channel recordings showed that the block was due to a reduced channel open probability and enhanced block upon ACh application. We also report that the inverse peptide Abeta(42-1), but not Abeta(40-1), partially mimicked the effects of the physiological Abeta(1-42) peptide. Possible implications for degenerative neuronal and muscular diseases are discussed.
Online Inquiry
Verification code
Inquiry Basket