Amyloid β-Protein (1-12)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Amyloid β-Protein (1-12)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Functional Peptides
Catalog number
BAT-014561
CAS number
142047-91-4
Molecular Formula
C61H85N17O23
Molecular Weight
1424.45
IUPAC Name
(4S)-4-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]propanoyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-4-carboxy-1-[[(1S)-1-carboxy-2-methylpropyl]amino]-1-oxobutan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
H-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-OH; L-alpha-aspartyl-L-alanyl-L-alpha-glutamyl-L-phenylalanyl-L-arginyl-L-histidyl-L-alpha-aspartyl-L-seryl-glycyl-L-tyrosyl-L-alpha-glutamyl-L-valine
Appearance
White Powder
Purity
≥95%
Sequence
DAEFRHDSGYEV
Storage
Store at -20°C
Solubility
Soluble in DMSO, Water
InChI
InChI=1S/C61H85N17O23/c1-29(2)49(60(100)101)78-55(95)38(16-18-46(84)85)73-56(96)39(21-32-11-13-34(80)14-12-32)70-44(81)26-67-52(92)43(27-79)77-59(99)42(24-48(88)89)76-58(98)41(22-33-25-65-28-68-33)75-53(93)36(10-7-19-66-61(63)64)72-57(97)40(20-31-8-5-4-6-9-31)74-54(94)37(15-17-45(82)83)71-50(90)30(3)69-51(91)35(62)23-47(86)87/h4-6,8-9,11-14,25,28-30,35-43,49,79-80H,7,10,15-24,26-27,62H2,1-3H3,(H,65,68)(H,67,92)(H,69,91)(H,70,81)(H,71,90)(H,72,97)(H,73,96)(H,74,94)(H,75,93)(H,76,98)(H,77,99)(H,78,95)(H,82,83)(H,84,85)(H,86,87)(H,88,89)(H,100,101)(H4,63,64,66)/t30-,35-,36-,37-,38-,39-,40-,41-,42-,43-,49-/m0/s1
InChI Key
PGDMZNKMGSIEOT-ZAHQXZHISA-N
Canonical SMILES
CC(C)C(C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(CC1=CC=C(C=C1)O)NC(=O)CNC(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)C(CC2=CN=CN2)NC(=O)C(CCCN=C(N)N)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CCC(=O)O)NC(=O)C(C)NC(=O)C(CC(=O)O)N
1. The role of anionic peptide fragments in 1N4R human tau protein aggregation
Mohammad Ali Nasiri Khalili, et al. Protein Pept Lett. 2014 Jun;21(6):511-6. doi: 10.2174/0929866521666131223120713.
Cellular protein degradation systems are necessary to avoid the accumulation of misfolded or damaged proteins. Deficiency in these systems might cause to partial degradation of misfolded proteins and generation of amyloidogenic fragments. Protein misfolding is believed to be the primary cause of neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate effect of two anionic peptide fragments including, an acidic fragment of human Aβ (Aβ1-11) and a phosphorylated fragment of β-Casein (Tetraphosphopeptide), on tau protein aggregation. According to our results, these peptide fragments, induced tau fibrillization in vitro. In sum, we suggest that structural and conformational characters of inducer are as important as charge distribution on anionic inducer molecules however more experiments would be need to exactly confirm this suggestion.
2. Preparation, physiochemical characterization, and oral immunogenicity of Abeta(1-12), Abeta(29-40), and Abeta(1-42) loaded PLG microparticles formulations
R Rajkannan, V Arul, E J Padma Malar, R Jayakumar J Pharm Sci. 2009 Jun;98(6):2027-39. doi: 10.1002/jps.21600.
Alzheimer's disease (AD) is caused by the deposition of beta-amyloid (Abeta) protein in brain. The current AD immunotherapy aims to prevent Abeta plaque deposition and enhance its degradation in the brain. In this work, the peptides B-cell epitope Abeta(1-12), T-cell epitope Abeta(29-40) and full-length Abeta(1-42) were loaded separately to the poly (D,L-lactide co-glycolide) (PLG) microparticles by using W/O/W double emulsion solvent evaporation method with entrapment efficacy of 70.46%, 60.93%, and 65.98%, respectively. The prepared Abeta PLG microparticles were smooth, spherical, individual, and nonporous in nature with diameters ranging from 2 to 12 microm. The cumulative in vitro release profiles of Abeta(1-12), Abeta(29-40), and Abeta(1-42) from PLG microparticles sustained for long periods and progressively reached to 73.89%, 69.29%, and 70.08% by week 15. In vitro degradation studies showed that the PLG microparticles maintained the surface integrity up to week 8 and eroded completely by week 16. Oral immunization of Abeta peptides loaded microparticles in mice elicited stronger immune response by inducing anti-Abeta antibodies for prolonged time (24 weeks). The physicochemical characterization and immunogenic potency of Abeta peptides incorporated PLG microparticles suggest that the microparticles formulation of Abeta can be a potential oral AD vaccine.
3. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments
Priya Narayan, et al. Chem Biol Drug Des. 2013 Jul;82(1):48-59. doi: 10.1111/cbdd.12129.
Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.
Online Inquiry
Verification code
Inquiry Basket