Amyloid β-Protein (1-38)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Amyloid β-Protein (1-38)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Like Aβ (25-35), Amyloid β-Protein (1-38) disrupts calcium homeostasis, making human cortical neurons vulnerable to environmental insults.

Category
Functional Peptides
Catalog number
BAT-015119
CAS number
131438-74-9
Molecular Formula
C184H277N51O56S1
Molecular Weight
4131.54
Amyloid β-Protein (1-38)
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-6-amino-1-[[2-[[(2S)-1-[[(2S,3S)-1-[[(2S,3S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-(carboxymethylamino)-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxohexan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]propanoyl]amino]-5-oxopentanoic acid
Synonyms
H-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-OH; L-alpha-aspartyl-L-alanyl-L-alpha-glutamyl-L-phenylalanyl-L-arginyl-L-histidyl-L-alpha-aspartyl-L-seryl-glycyl-L-tyrosyl-L-alpha-glutamyl-L-valyl-L-histidyl-L-histidyl-L-glutaminyl-L-lysyl-L-leucyl-L-valyl-L-phenylalanyl-L-phenylalanyl-L-alanyl-L-alpha-glutamyl-L-alpha-aspartyl-L-valyl-glycyl-L-seryl-L-asparagyl-L-lysyl-glycyl-L-alanyl-L-isoleucyl-L-isoleucyl-glycyl-L-leucyl-L-methionyl-L-valyl-glycyl-glycine
Appearance
White Powder
Purity
95%
Sequence
DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGG
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C184H277N51O56S/c1-21-96(15)150(180(288)201-82-137(244)208-118(63-90(3)4)166(274)218-117(58-62-292-20)164(272)230-146(92(7)8)178(286)199-79-134(241)196-84-145(258)259)235-183(291)151(97(16)22-2)234-154(262)98(17)205-135(242)80-197-156(264)110(43-32-34-59-185)213-173(281)127(73-133(189)240)224-177(285)131(86-237)210-138(245)83-200-179(287)147(93(9)10)231-176(284)129(75-144(256)257)225-162(270)115(52-56-140(248)249)212-153(261)100(19)207-165(273)121(65-101-37-26-23-27-38-101)221-169(277)123(67-103-41-30-25-31-42-103)227-181(289)149(95(13)14)233-175(283)119(64-91(5)6)219-158(266)111(44-33-35-60-186)214-160(268)113(50-54-132(188)239)216-170(278)124(69-105-76-192-87-202-105)223-172(280)126(71-107-78-194-89-204-107)228-182(290)148(94(11)12)232-163(271)116(53-57-141(250)251)217-167(275)120(68-104-46-48-108(238)49-47-104)209-136(243)81-198-157(265)130(85-236)229-174(282)128(74-143(254)255)226-171(279)125(70-106-77-193-88-203-106)222-159(267)112(45-36-61-195-184(190)191)215-168(276)122(66-102-39-28-24-29-40-102)220-161(269)114(51-55-139(246)247)211-152(260)99(18)206-155(263)109(187)72-142(252)253/h23-31,37-42,46-49,76-78,87-100,109-131,146-151,236-238H,21-22,32-36,43-45,50-75,79-86,185-187H2,1-20H3,(H2,188,239)(H2,189,240)(H,192,202)(H,193,203)(H,194,204)(H,196,241)(H,197,264)(H,198,265)(H,199,286)(H,200,287)(H,201,288)(H,205,242)(H,206,263)(H,207,273)(H,208,244)(H,209,243)(H,210,245)(H,211,260)(H,212,261)(H,213,281)(H,214,268)(H,215,276)(H,216,278)(H,217,275)(H,218,274)(H,219,266)(H,220,269)(H,221,277)(H,222,267)(H,223,280)(H,224,285)(H,225,270)(H,226,279)(H,227,289)(H,228,290)(H,229,282)(H,230,272)(H,231,284)(H,232,271)(H,233,283)(H,234,262)(H,235,291)(H,246,247)(H,248,249)(H,250,251)(H,252,253)(H,254,255)(H,256,257)(H,258,259)(H4,190,191,195)/t96-,97-,98-,99-,100-,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,146-,147-,148-,149-,150-,151-/m0/s1
InChI Key
NFHQEWIPLRTETB-CGARZLESSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C(C)CC)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CCSC)C(=O)NC(C(C)C)C(=O)NCC(=O)NCC(=O)O)NC(=O)C(C)NC(=O)CNC(=O)C(CCCCN)NC(=O)C(CC(=O)N)NC(=O)C(CO)NC(=O)CNC(=O)C(C(C)C)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(C)NC(=O)C(CC1=CC=CC=C1)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)N)NC(=O)C(CC3=CNC=N3)NC(=O)C(CC4=CNC=N4)NC(=O)C(C(C)C)NC(=O)C(CCC(=O)O)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)CNC(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)C(CC6=CNC=N6)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC7=CC=CC=C7)NC(=O)C(CCC(=O)O)NC(=O)C(C)NC(=O)C(CC(=O)O)N
1. Development of a pretreatment method for amyloid beta-protein analysis based on the effect of acetic acid on the dissolution of plasma polypeptides
Ryoya Goda, Kenichi Sudo, Osamu Okazaki, Hiroshi Masumoto Biomed Chromatogr . 2008 Nov;22(11):1279-87. doi: 10.1002/bmc.1058.
During the evaluation of a pretreatment method for the simultaneous quantification of four amyloid beta-protein fragments in transgenic mice plasma by a new gradient system, we have found that acetic acid has potency to completely dissolve plasma polypeptides in the presence of an organic solvent. Based on this observation, we designed a simple pretreatment method using an ultrafiltration membrane. An analysis of the filtrate obtained by this method suggests the possibility that acetic acid inhibits the interaction between amyloid beta-protein fragments and plasma polypeptides, which leads to a higher recovery of the amyloid beta-protein fragments from mouse plasma. In addition, higher dilution of mouse plasma using a dilution solution produced higher recovery as well. The highest recovery of amyloid beta-protein 1-38, 1-40, 1-42 and 1-43 fragments was 101.7, 94.9, 96.2 and 84.8%, respectively. Furthermore, calibration curves with the lower limit of quantification of 0.65 nM were successfully constructed with good accuracy using the developed method. Consequently, a pretreatment method using an ultrafiltration membrane is a powerful tool to determine the amyloid beta-protein fragments in transgenic mice plasma containing an abundance of plasma polypeptides such as albumin.
2. beta-amyloid deposits in transgenic mice expressing human beta-amyloid precursor protein have the same characteristics as those in Alzheimer's disease
S Kawabata, K Miyata, T Watanabe, A Iwai, T Yamaguchi, K Terai, Y Tasaki Neuroscience . 2001;104(2):299-310. doi: 10.1016/s0306-4522(01)00095-1.
A transgenic mouse expressing the human beta-amyloid precursor protein with the "Swedish" mutation, Tg2576, was used to investigate the mechanism of amyloid-beta peptide (Abeta) deposition. We characterized Abeta deposits in the cerebral cortex biochemically and pathologically. A surface-enhanced laser desorption/ionization affinity mass spectrometric study using the 6E10 monoclonal antibody demonstrated that the major species of Abeta in a formic acid-extracted fraction of the cortex were Abeta(1-38), Abeta(1-40) and Abeta(1-42). Immunohistochemistry using antibodies to the carboxy-terminal epitopes of Abeta(1-40) and Abeta(1-42), as well as 6E10, showed that plaques containing Abeta(1-42) were more numerous than those containing Abeta(1-40) throughout the cortex. Laser confocal analysis of the immunoreactivities in the plaques demonstrated that Abeta(1-40) was preferentially located in the central part of the Abeta(1-42) positive plaques. Enzyme-linked immunosorbent assay measurements of Abeta(1-40) and Abeta(1-42) showed that Abeta(1-40) was several-fold more abundant than Abeta(1-42). From these data we suggest that Abeta(1-42) deposition may precede Abeta(1-40) deposition, while Abeta(1-40) begins to deposit in the central part of the plaques and accumulates there. Furthermore, localization of Abeta(1-40) corresponded almost exactly to congophilic structures, which were associated with aberrant swollen synapses detected with antibodies to synaptophysin and alpha-synuclein. Thus, Abeta deposits in Tg2576 mice have similar characteristics to those in Alzheimer's disease.
3. Characterization of cerebrospinal fluid aminoterminally truncated and oxidized amyloid-β peptides
Volker Welge, Mirko Bibl, Hermann Esselmann, Jens Wiltfang, Sabine Lehmann, Katrin Sparbier, Marion Gallus Proteomics Clin Appl . 2012 Apr;6(3-4):163-9. doi: 10.1002/prca.201100082.
Purpose:Carboxyterminally elongated and aminoterminally truncated Aβ peptides as well as their pyroglutamate and oxidized derivates are major constituents of human amyloid plaques. The objective of the present study was to characterize aminoterminally truncated or oxidized Aβ38, Aβ40, and Aβ42 peptide species in immunoprecipitated human cerebrospinal fluid (CSF).Experimental design:We invented a novel sequential aminoterminally and carboxyterminally specific immunoprecipitation protocol and used the Aβ-SDS-PAGE/immunoblot for subsequent analysis of CSF Aβ peptide patterns.Results:In the present study, we identified the aminoterminally truncated Aβ peptides 2-40 and 2-42 as well as oxidized forms of Aβ1-38 and Aβ1-42 in CSF. Our protocol allowed the quantification of a pattern of Aβ peptides 1-38(ox), 2-40, and 2-42 in addition to the well known panel of Aβ 1-37, 1-38, 1-39, 1-40, 1-40(ox), and 1-42 in a group of seven patients with peripheral polyneuropathy.Conclusions and clinical relevance:In the present approach, we could broaden the range of quantifiable Aβ peptides described in previous studies (i.e., 1-37, 1-38, 1-39, 1-40, 1-40(ox), and 1-42) by Aβ 1-38(ox), 2-40, and 2-42. An exact analysis of CSF Aβ peptides regarding their carboxy- and aminoterminus as well as posttranslational modification seems promising with respect to diagnostic and pathogenic aspects.
Online Inquiry
Verification code
Inquiry Basket