Amyloid β-Protein (1-6)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Amyloid β-Protein (1-6)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

The experiments using sub-peptides of Aβ42 reveals that the epitope identified by antibody A8 is located in the 1-6 region of Aβ.

Category
Functional Peptides
Catalog number
BAT-014560
CAS number
214550-64-8
Molecular Formula
C33H47N11O11
Molecular Weight
773.79
IUPAC Name
(4S)-4-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]propanoyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxy-2-(1H-imidazol-5-yl)ethyl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
H-Asp-Ala-Glu-Phe-Arg-His-OH; L-α-Aspartylalanyl-L-α-glutamyl-L-phenylalanyl-L-arginyl-L-histidine; H-DAEFRH-OH
Appearance
White Powder
Purity
≥95%
Density
1.5±0.1 g/cm3
Sequence
Asp-Ala-Glu-Phe-Arg-His
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C33H47N11O11/c1-17(40-28(50)20(34)14-26(47)48)27(49)41-22(9-10-25(45)46)30(52)43-23(12-18-6-3-2-4-7-18)31(53)42-21(8-5-11-38-33(35)36)29(51)44-24(32(54)55)13-19-15-37-16-39-19/h2-4,6-7,15-17,20-24H,5,8-14,34H2,1H3,(H,37,39)(H,40,50)(H,41,49)(H,42,53)(H,43,52)(H,44,51)(H,45,46)(H,47,48)(H,54,55)(H4,35,36,38)/t17-,20-,21-,22-,23-,24-/m0/s1
InChI Key
YOEKWGKBUDWPJN-YYOLRRQBSA-N
Canonical SMILES
CC(C(=O)NC(CCC(=O)O)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CCCN=C(N)N)C(=O)NC(CC2=CN=CN2)C(=O)O)NC(=O)C(CC(=O)O)N
1. Norovirus P particle: an excellent vaccine platform for antibody production against Alzheimer's disease
Lu Fu, Yingnan Li, Yue Hu, Bin Yu, Haihong Zhang, Jiaxin Wu, Hui Wu, Xianghui Yu, Wei Kong Immunol Lett. 2015 Nov;168(1):22-30. doi: 10.1016/j.imlet.2015.09.002. Epub 2015 Sep 5.
Active vaccination against amyloid β (Aβ42) is considered a potential therapeutic approach for Alzheimer's disease (AD). However, immunization with synthetic human Aβ1-42 has resulted in meningoencephalitis in 6% of patients and generated only low-titer anti-Aβ42 antibodies. In order to develop a safe and effective vaccine against Alzheimer's disease, the Aβ1-6 peptide was used as the novel immunogen and Norovirus P particles as the vaccine platform in this study. By inserting and presenting Aβ1-6 on the outermost surface of the P particle, we showed that the chimeric P particle-based AD protein vaccine could elicit a strong immune response, inducing highly specific antibody titers against Aβ42 without causing T-cell activation. Furthermore, antibodies induced by the AD protein vaccines were demonstrated to be effective at the cellular level. In addition, we also compared the immunogenicity of the chimeric P particles with different insertional loci in the loop structure domain and demonstrated that insertion of the antigen into all three loops of the P particle at the same time could significantly improve immune responses to the vaccine. In conclusion, the Norovirus P particle is an excellent vaccine platform for stimulating Aβ42 antibody production, and chimeric P particles may be developed as an effective therapy for AD.
2. Enhancing Th2 immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer's disease
Hong-Duck Kim, Jing-Ji Jin, J Adam Maxwell, Ken-ichiro Fukuchi Immunol Lett. 2007 Sep 15;112(1):30-8. doi: 10.1016/j.imlet.2007.06.006. Epub 2007 Jul 23.
Accumulation of aggregated amyloid beta-protein (Abeta) in the brain is thought to be the initiating event leading to neurodegeneration and dementia in Alzheimer's disease (AD). Therefore, therapeutic strategies that clear accumulated Abeta and/or prevent Abeta production and its aggregation are predicted to be effective against AD. Immunization of AD mouse models with synthetic Abeta prevented or reduced Abeta load in the brain and ameliorated their memory and learning deficits. The clinical trials of Abeta immunization elicited immune responses in only 20% of AD patients and caused T-lymphocyte meningoencephalitis in 6% of AD patients. In attempting to develop safer vaccines, we previously demonstrated that an adenovirus vector, AdPEDI-(Abeta1-6)11, which encodes 11 tandem repeats of Abeta1-6 can induce anti-inflammatory Th2 immune responses in mice. Here, we investigated whether a DNA prime-adenovirus boost regimen could elicit a more robust Th2 response using AdPEDI-(Abeta1-6)11 and a DNA plasmid encoding the same antigen. All mice (n=7) subjected to the DNA prime-adenovirus boost regimen were positive for anti-Abeta antibody, while, out of 7 mice immunized with only AdPEDI-(Abeta1-6)11, four mice developed anti-Abeta antibody. Anti-Abeta titers were indiscernible in mice (n=7) vaccinated with only DNA plasmid. The mean anti-Abeta titer induced by the DNA prime-adenovirus boost regimen was approximately 7-fold greater than that by AdPEDI-(Abeta1-6)11 alone. Furthermore, anti-Abeta antibodies induced by the DNA prime-adenovirus boost regimen were predominantly of the IgG1 isotype. These results indicate that the DNA prime-adenovirus boost regimen can enhance Th2-biased responses with AdPEDI-(Abeta1-6)11 in mice and suggest that heterologous prime-boost strategies may make AD immunotherapy more effective in reducing accumulated Abeta.
3. The new β amyloid-derived peptide Aβ1-6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity
Luisa Diomede, et al. Neurobiol Dis. 2016 Apr;88:75-84. doi: 10.1016/j.nbd.2016.01.006. Epub 2016 Jan 11.
One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-β (Aβ) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aβ variant (AβA2V) in the heterozygous state do not develop AD, we developed AβA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aβ and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aβ1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aβ1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aβ aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aβ. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AβA2V-based peptidomimetic molecules for therapeutic purposes.
Online Inquiry
Verification code
Inquiry Basket