Amyloid β-Protein (40-1)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Amyloid β-Protein (40-1)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Amyloid β-Protein (40-1) is an inactive control of Amyloid β-Protein (1-40).

Category
Functional Peptides
Catalog number
BAT-015393
CAS number
144409-99-4
Molecular Formula
C194H295N53O58S
Molecular Weight
4329.86
Amyloid β-Protein (40-1)
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-6-amino-2-[[2-[[(2S)-2-[[(2S,3S)-2-[[(2S,3S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]acetyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]propanoyl]amino]acetyl]amino]hexanoyl]amino]-4-oxobutanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]propanoyl]amino]-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]amino]-5-oxopentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-methylbutanoyl]amino]-4-carboxybutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-phenylpropanoyl]amino]-4-carboxybutanoyl]amino]propanoyl]amino]butanedioic acid
Synonyms
β-Amyloid (40-1); H-Val-Val-Gly-Gly-Val-Met-Leu-Gly-Ile-Ile-Ala-Gly-Lys-Asn-Ser-Gly-Val-Asp-Glu-Ala-Phe-Phe-Val-Leu-Lys-Gln-His-His-Val-Glu-Tyr-Gly-Ser-Asp-His-Arg-Phe-Glu-Ala-Asp-OH; L-valyl-L-valyl-glycyl-glycyl-L-valyl-L-methionyl-L-leucyl-glycyl-L-isoleucyl-L-isoleucyl-L-alanyl-glycyl-L-lysyl-L-asparagyl-L-seryl-glycyl-L-valyl-L-alpha-aspartyl-L-alpha-glutamyl-L-alanyl-L-phenylalanyl-L-phenylalanyl-L-valyl-L-leucyl-L-lysyl-L-glutaminyl-L-histidyl-L-histidyl-L-valyl-L-alpha-glutamyl-L-tyrosyl-glycyl-L-seryl-L-alpha-aspartyl-L-histidyl-L-arginyl-L-phenylalanyl-L-alpha-glutamyl-L-alanyl-L-aspartic acid
Appearance
White or Off-white Lyophilized Powder
Purity
≥95%
Sequence
VVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEAD
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C194H295N53O58S/c1-25-102(19)158(243-145(258)88-209-163(274)123(67-94(3)4)228-173(284)122(62-66-306-24)226-187(298)154(98(11)12)241-143(256)84-206-140(253)83-211-186(297)153(97(9)10)246-185(296)152(199)96(7)8)192(303)247-159(103(20)26-2)191(302)217-104(21)160(271)207-85-141(254)218-115(47-36-38-63-195)168(279)235-132(76-139(198)252)179(290)240-136(89-248)165(276)210-87-144(257)242-155(99(13)14)188(299)238-134(78-150(267)268)180(291)224-120(56-60-147(261)262)167(278)215-105(22)161(272)227-126(69-107-41-30-27-31-42-107)176(287)231-128(71-109-45-34-29-35-46-109)182(293)244-157(101(17)18)190(301)237-124(68-95(5)6)174(285)220-116(48-37-39-64-196)169(280)222-118(54-58-138(197)251)171(282)232-130(74-112-81-203-92-213-112)178(289)234-131(75-113-82-204-93-214-113)183(294)245-156(100(15)16)189(300)225-121(57-61-148(263)264)172(283)229-125(72-110-50-52-114(250)53-51-110)164(275)208-86-142(255)219-137(90-249)184(295)236-133(77-149(265)266)181(292)233-129(73-111-80-202-91-212-111)177(288)221-117(49-40-65-205-194(200)201)170(281)230-127(70-108-43-32-28-33-44-108)175(286)223-119(55-59-146(259)260)166(277)216-106(23)162(273)239-135(193(304)305)79-151(269)270/h27-35,41-46,50-53,80-82,91-106,115-137,152-159,248-250H,25-26,36-40,47-49,54-79,83-90,195-196,199H2,1-24H3,(H2,197,251)(H2,198,252)(H,202,212)(H,203,213)(H,204,214)(H,206,253)(H,207,271)(H,208,275)(H,209,274)(H,210,276)(H,211,297)(H,215,278)(H,216,277)(H,217,302)(H,218,254)(H,219,255)(H,220,285)(H,221,288)(H,222,280)(H,223,286)(H,224,291)(H,225,300)(H,226,298)(H,227,272)(H,228,284)(H,229,283)(H,230,281)(H,231,287)(H,232,282)(H,233,292)(H,234,289)(H,235,279)(H,236,295)(H,237,301)(H,238,299)(H,239,273)(H,240,290)(H,241,256)(H,242,257)(H,243,258)(H,244,293)(H,245,294)(H,246,296)(H,247,303)(H,259,260)(H,261,262)(H,263,264)(H,265,266)(H,267,268)(H,269,270)(H,304,305)(H4,200,201,205)/t102-,103-,104-,105-,106-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,152-,153-,154-,155-,156-,157-,158-,159-/m0/s1
InChI Key
UHQFRXUCGJGTJV-ILZZQXMPSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C(C)CC)C(=O)NC(C)C(=O)NCC(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(CO)C(=O)NCC(=O)NC(C(C)C)C(=O)NC(CC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)N)C(=O)NC(CC3=CNC=N3)C(=O)NC(CC4=CNC=N4)C(=O)NC(C(C)C)C(=O)NC(CCC(=O)O)C(=O)NC(CC5=CC=C(C=C5)O)C(=O)NCC(=O)NC(CO)C(=O)NC(CC(=O)O)C(=O)NC(CC6=CNC=N6)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC7=CC=CC=C7)C(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(CC(=O)O)C(=O)O)NC(=O)CNC(=O)C(CC(C)C)NC(=O)C(CCSC)NC(=O)C(C(C)C)NC(=O)CNC(=O)CNC(=O)C(C(C)C)NC(=O)C(C(C)C)N
1. Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex
Toshitaka Nabeshima, Jin Hyeong Jhoo, Jong Inn Woo, Wang-Kee Jhoo, Wookyung Kim, Kee-Seok Kang, Hyoung-Chun Kim, Sangmee Ahn Jo, Kiyofumi Yamada, Eun-Joo Shin Behav Brain Res . 2004 Dec 6;155(2):185-96. doi: 10.1016/j.bbr.2004.04.012.
We have demonstrated that oxidative stress is involved, at least in part, in beta-amyloid protein (Abeta)-induced neurotoxicity in vivo [Eur. J. Neurosci. 1999;11:83-90; Neuroscience 2003;119:399-419]. However, mechanistic links between oxidative stress and memory loss in response to Abeta remain elusive. In the present study, we examined whether oxidative stress contributes to the memory deficits induced by intracerebroventricular injection of Abeta (1-42) in mice. Abeta (1-42)-induced memory impairments were observed, as measured by the water maze and passive avoidance tests, although these impairments were not found in Abeta (40-1)-treated mice. Treatment with antioxidant alpha-tocopherol significantly prevented memory impairment induced by Abeta (1-42). Increased activities of the cytosolic Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and mitochondrial Mn-superoxide dismutase (Mn-SOD) were observed in the hippocampus and cerebral cortex of Abeta (1-42)-treated animals, as compared with Abeta (40-1)-treated mice. The induction of Cu,Zn-SOD was more pronounced than that of Mn-SOD after Abeta (1-42) insult. However, the concomitant induction of glutathione peroxidase (GPX) in response to significant increases in SOD activity was not seen in animals treated with Abeta (1-42). Furthermore, glutathione reductase (GRX) activity was only increased at 2h after Abeta (1-42) injection. Production of malondialdehyde (lipid peroxidation) and protein carbonyl (protein oxidation) remained elevated at 10 days post-Abeta (1-42), but the antioxidant alpha-tocopherol significantly prevented these oxidative stresses. Therefore, our results suggest that the oxidative stress contributes to the Abeta (1-42)-induced learning and memory deficits in mice.
2. β-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway
Hina F Bhat, Sehar S Bhat, Rafia A Baba, Umar Mushtaq, Firdous A Khanday, Arif A Parray, Muneesa Bashir, Khurshid I Andrabi Neuromolecular Med . 2014 Mar;16(1):137-49. doi: 10.1007/s12017-013-8268-4.
We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates β-Amyloid-evoked apoptotic cell death.
3. Statins prevent beta-amyloid inhibition of sympathetic alpha7-nAChR-mediated nitrergic neurogenic dilation in porcine basilar arteries
Ding-I Yang, Tony Jer-Fu Lee, Mei-Fang Chen, Chen Long, Min-Liang Si J Cereb Blood Flow Metab . 2005 Dec;25(12):1573-85. doi: 10.1038/sj.jcbfm.9600232.
The exact mechanism underlying regional cerebral hypoperfusion in the early phase of Alzheimer's disease (AD) is not understood. We have shown in isolated porcine cerebral arteries that stimulation of sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) causes release of nitric oxide in parasympathetic nitrergic nerves and vasodilation. We therefore examined if beta-amyloid peptides (Abetas), which play a key role in pathogenesis of AD, blocked sympathetic alpha7-nAChRs leading to reduced neurogenic nitrergic dilation in isolated porcine basilar arteries, using in vitro tissue bath, calcium image, and patch clamping techniques. The results indicated that Abeta(1-40), but not Abeta(40-1), blocked relaxation of endothelium-denuded basilar arterial rings induced by nicotine (100 micromol/L) and choline (1 mmol/L) without affecting that induced by sodium nitroprusside or isoproterenol. In cultured superior cervical ganglion (SCG) cells, Abeta(1-40), but not Abeta(40-1), blocked choline- and nicotine-induced calcium influx and inward currents. The Abeta blockade of the nitrergic vasodilation and inward currents, but not that of calcium influx, was prevented by acute pretreatment with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors mevastatin and lovastatin. These results suggest that Abeta(1-40) blocks cerebral perivascular sympathetic alpha7-nAChRs, resulting in the attenuation of cerebral nitrergic neurogenic vasodilation. This effect of Abeta may be responsible in part for cerebral hypoperfusion occurred in the early phase of the AD, which may be prevented by statins most likely because of their effects independent of cholesterol lowering. Statins may offer an alternative strategy in the prevention and treatment of AD.
Online Inquiry
Verification code
Inquiry Basket