Angiopep-2
Need Assistance?
  • US & Canada:
    +
  • UK: +

Angiopep-2

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

A Kunitz-derived inhibitor.

Category
Peptide Inhibitors
Catalog number
BAT-009974
CAS number
906480-05-5
Molecular Formula
C104H149N29O31
Molecular Weight
2301.47
IUPAC Name
(2S,5S,8S,14S,17S,20S,23S,26S,29S,35S,38S,47S,50S,53S,57R)-56-amino-20,23-bis(2-amino-2-oxoethyl)-14,29-bis(4-aminobutyl)-17,50,53-tribenzyl-5,8-bis(2-carboxyethyl)-26,35-bis(3-guanidinopropyl)-57-hydroxy-2,47-bis(4-hydroxybenzyl)-11-((R)-1-hydroxyethyl)-38-(hydroxymethyl)-4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55-octadecaoxo-3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54-octadecaazaoctapentacontanoic acid
Synonyms
H-Thr-Phe-Phe-Tyr-Gly-Gly-Ser-Arg-Gly-Lys-Arg-Asn-Asn-Phe-Lys-Thr-Glu-Glu-Tyr-OH
Purity
>95%
Density
1.50±0.1 g/cm3(Predicted)
Sequence
TFFYGGSRGKRNNFKTEEY
Storage
Store at -20°C
InChI
InChI=1S/C104H149N29O31/c1-55(135)85(109)100(161)131-73(46-59-22-10-5-11-23-59)96(157)127-72(45-58-20-8-4-9-21-58)95(156)126-70(47-60-28-32-62(137)33-29-60)88(149)117-51-80(141)116-52-81(142)120-77(54-134)99(160)121-64(26-16-42-114-103(110)111)87(148)118-53-82(143)119-65(24-12-14-40-105)89(150)122-67(27-17-43-115-104(112)113)90(151)129-74(49-78(107)139)98(159)130-75(50-79(108)140)97(158)128-71(44-57-18-6-3-7-19-57)94(155)123-66(25-13-15-41-106)93(154)133-86(56(2)136)101(162)125-69(37-39-84(146)147)91(152)124-68(36-38-83(144)145)92(153)132-76(102(163)164)48-61-30-34-63(138)35-31-61/h3-11,18-23,28-35,55-56,64-77,85-86,134-138H,12-17,24-27,36-54,105-106,109H2,1-2H3,(H2,107,139)(H2,108,140)(H,116,141)(H,117,149)(H,118,148)(H,119,143)(H,120,142)(H,121,160)(H,122,150)(H,123,155)(H,124,152)(H,125,162)(H,126,156)(H,127,157)(H,128,158)(H,129,151)(H,130,159)(H,131,161)(H,132,153)(H,133,154)(H,144,145)(H,146,147)(H,163,164)(H4,110,111,114)(H4,112,113,115)/t55-,56-,64+,65+,66+,67+,68+,69+,70+,71+,72+,73+,74+,75+,76+,77+,85+,86+/m1/s1
InChI Key
RCVVJXYDPKEONQ-JVFWYHQTSA-N
Canonical SMILES
CC(C(C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(CC3=CC=C(C=C3)O)C(=O)NCC(=O)NCC(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NCC(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(=O)N)C(=O)NC(CC(=O)N)C(=O)NC(CC4=CC=CC=C4)C(=O)NC(CCCCN)C(=O)NC(C(C)O)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(CC5=CC=C(C=C5)O)C(=O)O)N)O
1. Angiopep-2 as an Exogenous Chemical Exchange Saturation Transfer Contrast Agent in Diagnosis of Alzheimer's Disease
Chengguang Wang, Guisen Lin, Zhiwei Shen, Runrun Wang J Healthc Eng. 2022 Apr 5;2022:7480519. doi: 10.1155/2022/7480519. eCollection 2022.
Background: Chemical exchange saturation transfer (CEST) is a novel imaging modality in clinical practice and scientific research. Angiopep-2 is an artificial peptide that can penetrate blood-brain barrier. The aim of this study was to explore the feasibility of Angiopep-2 serving as an exogenous CEST contrast. Methods: Phantoms of Angiopep-2 with different concentrations were prepared and then scanned using the 7.0T small animal MRI scanner. Different parameters including saturation powers and saturation duration were used to achieve the optimal CEST effect, and the optimal parameters were finally selected based on Z-spectra, asymmetric spectra, and phantom CEST imaging. CEST scanning of dimethyl sulfoxide (DMSO), the substance helping Angiopep-2 to be dissolved in water, was performed to exclude its contribution for the CEST effect. Results: A broad dip was observed from 2.5 to 3.5 ppm in the Z-spectra of Angiopep-2 phantoms. The most robust CEST was generated at 3.2 ppm when using formula (M -3.2ppm - M +3.2ppm)/M -3.2ppm. The CEST effect of Angiopep-2 was concentration dependent; the effect increased as the concentration increased. In addition, the CEST effect was more obvious as the saturation power increased and peaked at 5.5 µT, and the CEST effect increased as the saturation duration increased. DMSO showed nearly 0% of the CEST effect at 3.2 ppm. Conclusions: Our results demonstrate that Angiopep-2 can act as an excellent exogenous CEST contrast. As it can penetrate blood-brain barrier and bind amyloid-β protein, amyloid-β targeting CEST, with Angiopep-2 as an exogenous contrast agent, can be potentially used as a novel imaging modality for early diagnosis of Alzheimer's disease. Collectively, Angiopep-2 may play a critical role in early diagnosis of Alzheimer's disease.
2. Angiopep-2-Modified Nanoparticles for Brain-Directed Delivery of Therapeutics: A Review
Saffiya Habib, Moganavelli Singh Polymers (Basel). 2022 Feb 12;14(4):712. doi: 10.3390/polym14040712.
Nanotechnology has opened up a world of possibilities for the treatment of brain disorders. Nanosystems can be designed to encapsulate, carry, and deliver a variety of therapeutic agents, including drugs and nucleic acids. Nanoparticles may also be formulated to contain photosensitizers or, on their own, serve as photothermal conversion agents for phototherapy. Furthermore, nano-delivery agents can enhance the efficacy of contrast agents for improved brain imaging and diagnostics. However, effective nano-delivery to the brain is seriously hampered by the formidable blood-brain barrier (BBB). Advances in understanding natural transport routes across the BBB have led to receptor-mediated transcytosis being exploited as a possible means of nanoparticle uptake. In this regard, the oligopeptide Angiopep-2, which has high BBB transcytosis capacity, has been utilized as a targeting ligand. Various organic and inorganic nanostructures have been functionalized with Angiopep-2 to direct therapeutic and diagnostic agents to the brain. Not only have these shown great promise in the treatment and diagnosis of brain cancer but they have also been investigated for the treatment of brain injury, stroke, epilepsy, Parkinson's disease, and Alzheimer's disease. This review focuses on studies conducted from 2010 to 2021 with Angiopep-2-modified nanoparticles aimed at the treatment and diagnosis of brain disorders.
3. Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging
Senthilkumar Thirumurugan, et al. Nanoscale. 2022 Oct 13;14(39):14789-14800. doi: 10.1039/d2nr03683e.
The poor permeability of therapeutic agents across the blood-brain barrier and blood-tumor barrier is a significant barrier in glioma treatment. Low-density lipoprotein receptor-related protein (LRP-1) recognises a dual-targeting ligand, angiopep-2, which is overexpressed in the BBB and gliomas. Here, we have synthesized Ti@FeAu core-shell nanoparticles conjugated with angiopep-2 (Ti@FeAu-Ang nanoparticles) to target glioma cells and treat brain cancer via hyperthermia produced by a magnetic field. Our results confirmed that Ti@FeAu core-shell nanoparticles were superparamagnetic, improved the negative contrast effect on glioma, and exhibited a temperature elevation of 12° C upon magnetic stimulation, which implies potential applications in magnetic resonance imaging (MRI) and hyperthermia-based cancer therapy. Angiopep-2-decorated nanoparticles exhibited higher cellular uptake by C6 glioma cells than by L929 fibroblasts, demonstrating selective glioma targeting and improved cytotoxicity up to 85% owing to hyperthermia produced by a magnetic field. The in vivo findings demonstrated that intravenous injection of Ti@FeAu-Ang nanoparticles exhibited a 10-fold decrement in tumor volume compared to the control group. Furthermore, immunohistochemical analysis of Ti@FeAu-Ang nanoparticles showed that coagulative necrosis of tumor tissues and preliminary safety analysis highlighted no toxicity to the haematological system, after Ti@FeAu-Ang nanoparticle-induced hyperthermia treatment.
Online Inquiry
Verification code
Inquiry Basket