Apelin-17 (Human, Bovine)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Apelin-17 (Human, Bovine)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Apelin-17 (human, bovine) is an endogenous ligand of the G protein-coupled APJ receptor with EC50 value of 2.5 nM that is secreted by adipocytes. It potently inhibits forskolin-stimulated cAMP production in vitro.

Category
Peptide Inhibitors
Catalog number
BAT-010727
CAS number
217082-57-0
Molecular Formula
C96H156N34O20S
Molecular Weight
2138.56
Apelin-17 (Human, Bovine)
IUPAC Name
2-[[1-[2-[[1-[2-[[6-amino-2-[[2-[[2-[[2-[[2-[[1-[2-[[5-amino-2-[[5-carbamimidamido-2-[[5-carbamimidamido-2-[[2-(2,6-diaminohexanoylamino)-3-phenylpropanoyl]amino]pentanoyl]amino]pentanoyl]amino]-5-oxopentanoyl]amino]-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]hexanoyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]pyrrolidine-2-carbonyl]amino]-3-phenylpropanoic acid
Synonyms
[Phe17]-Apelin 17
Appearance
White to off-white (Solid)
Purity
98.86%
Density
1.49±0.1 g/cm3(Predicted)
Sequence
KFRRQRPRLSHKGPMPF
Storage
Store at -20°C
Solubility
Soluble to 1.20 mg/ml in water
InChI
InChI=1S/C96H156N34O20S/c1-55(2)47-67(83(140)127-71(53-131)86(143)125-69(50-58-51-109-54-115-58)85(142)116-60(26-11-13-38-98)78(135)114-52-76(133)128-43-18-31-72(128)87(144)122-66(36-46-151-3)91(148)130-45-20-33-74(130)89(146)126-70(92(149)150)49-57-23-8-5-9-24-57)124-81(138)63(29-16-41-112-95(105)106)120-88(145)73-32-19-44-129(73)90(147)65(30-17-42-113-96(107)108)121-82(139)64(34-35-75(100)132)119-80(137)61(27-14-39-110-93(101)102)117-79(136)62(28-15-40-111-94(103)104)118-84(141)68(48-56-21-6-4-7-22-56)123-77(134)59(99)25-10-12-37-97/h4-9,21-24,51,54-55,59-74,131H,10-20,25-50,52-53,97-99H2,1-3H3,(H2,100,132)(H,109,115)(H,114,135)(H,116,142)(H,117,136)(H,118,141)(H,119,137)(H,120,145)(H,121,139)(H,122,144)(H,123,134)(H,124,138)(H,125,143)(H,126,146)(H,127,140)(H,149,150)(H4,101,102,110)(H4,103,104,111)(H4,105,106,112)(H4,107,108,113)/t59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-/m0/s1
InChI Key
SVWSKJCJNAIKNH-MJZUAXFLSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CO)C(=O)NC(CC1=CNC=N1)C(=O)NC(CCCCN)C(=O)NCC(=O)N2CCCC2C(=O)NC(CCSC)C(=O)N3CCCC3C(=O)NC(CC4=CC=CC=C4)C(=O)O)NC(=O)C(CCCNC(=N)N)NC(=O)C5CCCN5C(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(CCCCN)N
1.Functional dissociation of apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure.
El Messari S;Iturrioz X;Fassot C;De Mota N;Roesch D;Llorens-Cortes C J Neurochem. 2004 Sep;90(6):1290-301.
Apelin is a novel neuropeptide involved in the regulation of body fluid homeostasis and cardiovascular functions. It acts through a G protein-coupled receptor, the APJ receptor. We studied the structure-activity relationships of apelin at the rat apelin receptor, tagged at its C-terminal end with enhanced green fluorescent protein and stably expressed in CHO cells. We evaluated the potency of N- and C-terminal deleted fragments of K17F to bind with high affinity to the apelin receptor, and to inhibit cAMP production and to induce apelin receptor internalization. We first characterized the internalization and trafficking of the rat apelin receptor. This receptor was internalized via a clathrin-dependent mechanism and our results suggest that receptor trafficking may follow a recycling pathway. We then tried to identify the amino acids of K17F required for apelin activity. The first five N-terminal and the last two C-terminal amino acids of K17F were not essential for apelin binding or the inhibition of cAMP production. However, the full-length sequence of K17F was the most potent inducer of apelin receptor internalization because successive N-terminal amino-acid deletions progressively reduced internalization and the removal of a single amino acid at the C-terminus abolished this process.
2.Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain.
Reaux A;De Mota N;Skultetyova I;Lenkei Z;El Messari S;Gallatz K;Corvol P;Palkovits M;Llorens-Cortès C J Neurochem. 2001 May;77(4):1085-96.
Apelin, a peptide recently isolated from bovine stomach tissue extracts, has been identified as the endogenous ligand of the human orphan APJ receptor. We established a stable Chinese hamster ovary (CHO) cell line expressing a gene encoding the rat apelin receptor fused to the enhanced green fluorescent protein, to investigate internalization and the pharmacological profile of the apelin receptor. Stimulation of this receptor by the apelin fragments K17F (Lys1-Phe-Arg-Arg-Gln-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe17) and pE13F (pGlu5-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe17) resulted in a dose-dependent inhibition of forskolin-induced cAMP production and promoted its internalization. In contrast, the apelin fragments R10F (Arg8-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe17) and G5F (Gly13-Pro-Met-Pro-Phe17) were inactive. The physiological role of apelin and its receptor was then investigated by showing for the first time in rodent brain: (i) detection of apelin neurons in the supraoptic and paraventricular nuclei by immunohistochemistry with a specific polyclonal anti-apelin K17F antibody; (ii) detection of apelin receptor mRNA in supraoptic vasopressinergic neurons by in situ hybridization and immunohistochemistry; and (iii) a decrease in vasopressin release following intracerebroventricular injection of K17F, or pE13F, but not R10F.
3.Distribution of apelin-synthesizing neurons in the adult rat brain.
Reaux A;Gallatz K;Palkovits M;Llorens-Cortes C Neuroscience. 2002;113(3):653-62.
The peptide apelin originating from a larger precursor preproapelin molecule has been recently isolated and identified as the endogenous ligand of the human orphan G protein-coupled receptor, APJ (putative receptor protein related to the angiotensin receptor AT(1)). We have shown recently that apelin and apelin receptor mRNA are expressed in brain and that the centrally injected apelin fragment K17F (Lys(1)-Phe-Arg-Arg-Gln-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe(17)) decreased vasopressin release and altered drinking behavior. Using a specific polyclonal antiserum against K17F for immunohistochemistry, the aim of the present study was to establish the precise topographical distribution of apelin immunoreactivity in colchicine-treated adult rat brain. Immunoreactivity was essentially detected in neuronal cell bodies and fibers throughout the entire neuroaxis in different densities. Cells bodies have been visualized in the preoptic region, the hypothalamic supraoptic and paraventricular nuclei and in the highest density, in the arcuate nucleus. Apelin immunoreactive cell bodies were also seen in the pons and the medulla oblongata. Apelin nerve fibers appear more widely distributed than neuronal apelin cell bodies.
Online Inquiry
Verification code
Inquiry Basket