ARTC1
Need Assistance?
  • US & Canada:
    +
  • UK: +

ARTC1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

ARTC1 is a regulator of GRP78/BiP in GRP78-mediated ER stress responses.

Category
Others
Catalog number
BAT-009556
Sequence
YSVYFNLPADTIYTN
Storage
Common storage 2-8°C, long time storage -20°C.
1. Mono-ADP-ribosylation sites of human CD73 inhibit its adenosine-generating enzymatic activity
Julia Hesse, Mona K Rosse, Bodo Steckel, Bernhard Blank-Landeshammer, Svenja Idel, Yvonne Reinders, Albert Sickmann, Norbert Sträter, Jürgen Schrader Purinergic Signal. 2022 Mar;18(1):115-121. doi: 10.1007/s11302-021-09832-4. Epub 2021 Dec 27.
CD73-derived adenosine plays a major role in damage-induced tissue responses by inhibiting inflammation. Damage-associated stimuli, such as hypoxia and mechanical stress, induce the cellular release of ATP and NAD+ and upregulate the expression of the nucleotide-degrading purinergic ectoenzyme cascade, including adenosine-generating CD73. Extracellular NAD+ also serves as substrate for mono-ADP-ribosylation of cell surface proteins, which in human cells is mediated by ecto-ADP-ribosyltransferase 1 (ARTC1). Here we explored, whether human CD73 enzymatic activity is regulated by mono-ADP-ribosylation, using recombinant human CD73 in the presence of ARTC1 with etheno-labelled NAD+ as substrate. Multi-colour immunoblotting with an anti-etheno-adenosine antibody showed ARTC1-mediated transfer of ADP-ribose together with the etheno label to CD73. HPLC analysis of the enzymatic activity of in vitro-ribosylated CD73 revealed strong inhibition of adenosine generation in comparison to non-ribosylated CD73. Mass spectrometry of in vitro-ribosylated CD73 identified six ribosylation sites. 3D model analysis indicated that three of them (R328, R354, R545) can interfere with CD73 enzymatic activity. Our study identifies human CD73 as target for ARTC1-mediated mono-ADP-ribosylation, which can profoundly modulate its adenosine-generating activity. Thus, in settings with enhanced release of NAD+ as substrate for ARTC1, assessment of CD73 protein expression in human tissues may not be predictive of adenosine formation resulting in anti-inflammatory activity.
2. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses
Gaia Fabrizio, et al. Cell Mol Life Sci. 2015 Mar;72(6):1209-25. doi: 10.1007/s00018-014-1745-6. Epub 2014 Oct 8.
Protein mono-ADP-ribosylation is a reversible post-translational modification of cellular proteins. This scheme of amino-acid modification is used not only by bacterial toxins to attack host cells, but also by endogenous ADP-ribosyltransferases (ARTs) in mammalian cells. These latter ARTs include members of three different families of proteins: the well characterised arginine-specific ecto-enzymes (ARTCs), two sirtuins, and some members of the poly(ADP-ribose) polymerase (PARP/ARTD) family. In the present study, we demonstrate that human ARTC1 is localised to the endoplasmic reticulum (ER), in contrast to the previously characterised ARTC proteins, which are typical GPI-anchored ecto-enzymes. Moreover, using the "macro domain" cognitive binding module to identify ADP-ribosylated proteins, we show here that the ER luminal chaperone GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) is a cellular target of human ARTC1 and hamster ARTC2. We further developed a procedure to visualise ADP-ribosylated proteins using immunofluorescence. With this approach, in cells overexpressing ARTC1, we detected staining of the ER that co-localises with GRP78/BiP, thus confirming that this modification occurs in living cells. In line with the key role of GRP78/BiP in the ER stress response system, we provide evidence here that ARTC1 is activated during the ER stress response, which results in acute ADP-ribosylation of GRP78/BiP paralleling translational inhibition. Thus, this identification of ARTC1 as a regulator of GRP78/BiP defines a novel, previously unsuspected, player in GRP78-mediated ER stress responses.
3. Proteomic Characterization of the Heart and Skeletal Muscle Reveals Widespread Arginine ADP-Ribosylation by the ARTC1 Ectoenzyme
Mario Leutert, et al. Cell Rep. 2018 Aug 14;24(7):1916-1929.e5. doi: 10.1016/j.celrep.2018.07.048.
The clostridium-like ecto-ADP-ribosyltransferase ARTC1 is expressed in a highly restricted manner in skeletal muscle and heart tissue. Although ARTC1 is well studied, the identification of ARTC1 targets in vivo and subsequent characterization of ARTC1-regulated cellular processes on the proteome level have been challenging and only a few ARTC1-ADP-ribosylated targets are known. Applying our recently developed mass spectrometry-based workflow to C2C12 myotubes and to skeletal muscle and heart tissues from wild-type mice, we identify hundreds of ARTC1-ADP-ribosylated proteins whose modifications are absent in the ADP-ribosylome of ARTC1-deficient mice. These proteins are ADP-ribosylated on arginine residues and mainly located on the cell surface or in the extracellular space. They are associated with signal transduction, transmembrane transport, and muscle function. Validation of hemopexin (HPX) as a ARTC1-target protein confirmed the functional importance of ARTC1-mediated extracellular arginine ADP-ribosylation at the systems level.
Online Inquiry
Verification code
Inquiry Basket