Need Assistance?
  • US & Canada:
    +
  • UK: +

BeKm 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

BeKm 1 is a potent and selective KV11.1 (hERG) channel blocker.

Category
Peptide Inhibitors
Catalog number
BAT-010268
CAS number
524962-01-4
Molecular Formula
C174H261N51O52S6
Molecular Weight
4091.65
BeKm 1
IUPAC Name
(3S)-4-[[(2S,3S)-1-[[(2S)-6-amino-1-[[(1R,4S,7R,12R,15S,18S,21S,24S,30S,33S,36S,42S,45R,50R,53S,56S,59S,62S,65S,68R,75S,81S,84S,89S,95S,98S)-15,30-bis(4-aminobutyl)-36,81-bis(2-amino-2-oxoethyl)-65-(3-amino-3-oxopropyl)-24,75,89-tribenzyl-21,42-bis(3-carbamimidamidopropyl)-56-(2-carboxyethyl)-4-(carboxymethyl)-7-[[(1S)-1-carboxy-2-phenylethyl]carbamoyl]-33-[(1R)-1-hydroxyethyl]-18,53,59-tris(hydroxymethyl)-62-[(4-hydroxyphenyl)methyl]-2,5,13,16,19,22,25,28,31,34,37,40,43,51,54,57,60,63,66,74,77,80,83,86,87,90,96,99-octacosaoxo-84,98-di(propan-2-yl)-9,10,47,48,70,71-hexathia-a,3,6,14,17,20,23,26,29,32,35,38,41,44,52,55,58,61,64,67,73,76,79,82,85,88,91,97-octacosazatetracyclo[43.27.14.1412,68.091,95]hectan-50-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-[[(2S,3R)-2-[[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoyl]amino]-4-oxobutanoic acid
Sequence
RPTDIKC(1)SESYQC(2)FPVC(3)KSRFGKTNGRC(1)VNGFC(2)DC(3)F
Storage
Store at -20°C
InChI
InChI=1S/C174H261N51O52S6/c1-9-88(6)136(221-152(257)111(73-133(242)243)207-168(273)138(90(8)230)223-163(268)123-47-31-63-224(123)169(274)97(178)41-28-60-188-172(182)183)166(271)201-101(44-24-27-59-177)145(250)213-120-83-281-283-85-122-161(266)219-134(86(2)3)164(269)205-108(70-126(180)233)140(245)193-76-130(237)196-106(66-92-35-16-11-17-36-92)149(254)216-117-80-278-279-81-118(214-147(252)103(53-55-125(179)232)199-150(255)107(67-95-49-51-96(231)52-50-95)203-155(260)116(79-228)211-146(251)104(54-56-131(238)239)200-154(259)115(78-227)212-160(120)265)158(263)208-112(68-93-37-18-12-19-38-93)170(275)225-64-32-48-124(225)162(267)220-135(87(4)5)165(270)218-121(84-282-280-82-119(217-151(256)110(72-132(240)241)204-157(117)262)159(264)209-113(171(276)277)69-94-39-20-13-21-40-94)156(261)198-100(43-23-26-58-176)144(249)210-114(77-226)153(258)197-102(46-30-62-190-174(186)187)143(248)202-105(65-91-33-14-10-15-34-91)139(244)191-74-128(235)194-98(42-22-25-57-175)148(253)222-137(89(7)229)167(272)206-109(71-127(181)234)141(246)192-75-129(236)195-99(142(247)215-122)45-29-61-189-173(184)185/h10-21,33-40,49-52,86-90,97-124,134-138,226-231H,9,22-32,41-48,53-85,175-178H2,1-8H3,(H2,179,232)(H2,180,233)(H2,181,234)(H,191,244)(H,192,246)(H,193,245)(H,194,235)(H,195,236)(H,196,237)(H,197,258)(H,198,261)(H,199,255)(H,200,259)(H,201,271)(H,202,248)(H,203,260)(H,204,262)(H,205,269)(H,206,272)(H,207,273)(H,208,263)(H,209,264)(H,210,249)(H,211,251)(H,212,265)(H,213,250)(H,214,252)(H,215,247)(H,216,254)(H,217,256)(H,218,270)(H,219,266)(H,220,267)(H,221,257)(H,222,253)(H,223,268)(H,238,239)(H,240,241)(H,242,243)(H,276,277)(H4,182,183,188)(H4,184,185,189)(H4,186,187,190)
InChI Key
OQEMUGXECXBKDP-UHFFFAOYSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCCCN)C(=O)NC1CSSCC2C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC3CSSCC(C(=O)NC(C(=O)N4CCCC4C(=O)NC(C(=O)NC(CSSCC(NC(=O)C(NC3=O)CC(=O)O)C(=O)NC(CC5=CC=CC=C5)C(=O)O)C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)N2)CCCNC(=N)N)CC(=O)N)C(C)O)CCCCN)CC6=CC=CC=C6)CCCNC(=N)N)CO)CCCCN)C(C)C)CC7=CC=CC=C7)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC1=O)CO)CCC(=O)O)CO)CC8=CC=C(C=C8)O)CCC(=O)N)CC9=CC=CC=C9)CC(=O)N)C(C)C)NC(=O)C(CC(=O)O)NC(=O)C(C(C)O)NC(=O)C1CCCN1C(=O)C(CCCNC(=N)N)N
1. Preferential closed channel blockade of HERG potassium currents by chemically synthesised BeKm-1 scorpion toxin
Olivia Crociani, James T Milnes, Harry J Witchel, Christopher E Dempsey, Jules C Hancox, John M Ridley, Annarosa Arcangeli FEBS Lett . 2003 Jul 17;547(1-3):20-6. doi: 10.1016/s0014-5793(03)00662-8.
The scorpion toxin peptide BeKm-1 was synthesised by fluorenylmethoxycarbonyl solid phase chemistry and folded by air oxidation. The peptide's effects on heterologous human ether-a-go-go-related gene potassium current (I(HERG)) in HEK293 cells were assessed using 'whole-cell' patch clamp. Blockade of I(HERG) by BeKm-1 was concentration-dependent, temperature-dependent, and rapid in onset and reversibility. Blockade also exhibited inverse voltage dependence, inverse dependence on duration of depolarisation, and reverse use- and frequency-dependence. Blockade by BeKm-1 and recombinant ergtoxin, another scorpion toxin known to block HERG, differed in their recovery from HERG current inactivation elicited by strong depolarisation and in their ability to block HERG when the channels were already activated. We conclude that synthetic BeKm-1 toxin blocks HERG preferentially through a closed (resting) state channel blockade mechanism, although some open channel blockade also occurs.
2. An ERG channel inhibitor from the scorpion Buthus eupeus
B S Jensen, K A Pluzhnikov, S A Kozlov, S P Olesen, E V Grishin, T Jespersen, D Strøbaek, K Angelo, A V Lipkin, Y V Korolkova, D A Brown, J K Hadley, A K Filippov J Biol Chem . 2001 Mar 30;276(13):9868-76. doi: 10.1074/jbc.M005973200.
The isolation of the peptide inhibitor of M-type K(+) current, BeKm-1, from the venom of the Central Asian scorpion Buthus eupeus has been described previously (Fillipov A. K., Kozlov, S. A., Pluzhnikov, K. A., Grishin, E. V., and Brown, D. A. (1996) FEBS Lett. 384, 277-280). Here we report the cloning, expression, and selectivity of BeKm-1. A full-length cDNA of 365 nucleotides encoding the precursor of BeKm-1 was isolated using the rapid amplification of cDNA ends polymerase chain reaction technique from mRNA obtained from scorpion telsons. Sequence analysis of the cDNA revealed that the precursor contains a signal peptide of 21 amino acid residues. The mature toxin consists of 36 amino acid residues. BeKm-1 belongs to the family of scorpion venom potassium channel blockers and represents a new subgroup of these toxins. The recombinant BeKm-1 was produced as a Protein A fusion product in the periplasm of Escherichia coli. After cleavage and high performance liquid chromatography purification, recombinant BeKm-1 displayed the same properties as the native toxin. Three BeKm-1 mutants (R27K, F32K, and R27K/F32K) were generated, purified, and characterized. Recombinant wild-type BeKm-1 and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels.
3. Interaction simulation of hERG K+ channel with its specific BeKm-1 peptide: insights into the selectivity of molecular recognition
Yingliang Wu, Chao Dai, Hong Yi, Zhijian Cao, Wenxin Li, Shijin Yin J Proteome Res . 2007 Feb;6(2):611-20. doi: 10.1021/pr060368g.
Potassium channels show a huge variability in the affinity when recognizing enormous bioactive peptides, and the elucidation of their recognition mechanism remains a great challenge due to an undetermined peptide-channel complex structure. Here, we employed combined computation methods to study the specific binding of BeKm-1 peptide to the hERG potassium channel, which is an essential determinant of the long-QT syndrome. By the use of a segment-assembly homology modeling method, the closed-state hERG structure containing unusual longer S5P linker was successfully constructed. It has a "petunia" shape, while four "petals" of symmetrically distributed S5P segments always decentralize. Starting from the hERG and BeKm-1 structures, a considerably reasonable BeKm-1-hERG complex structure was then screened out and identified by protein-protein docking, molecular dynamics (MD) simulations, and calculation of relative binding free energies. The validity of this predicted complex was further assessed by computational alanine-scanning, with the results correlating reasonably well with experimental data. In the novel complex structure, four considerably flexible S5P linkers are far from the BeKm-1 peptide. The BeKm-1 mainly uses its helical region to associate the channel outer vestibule, except for the S5P linker region; however, structural analysis further implies this neutral pore region with wiggling S5P linker is highly beneficial to the binding of BeKm-1 with lower positive charges. The most critical Lys18 of BeKm-1 plugs its side chain into the channel selectivity filter, while the secondarily important Arg20 forms three hydrogen bonds with spatially neighboring residues in the hERG channel. Different from the classical peptide-K+ channel interaction mainly induced by electrostatic interaction, a synergetic effect of the electrostatic and van der Waals interactions was found to mediate the molecular recognition between BeKm-1 and the hERG channel. And this specific binding process is revealed to be a dynamic change of reduction of binding free energy and conformational rearrangement mainly in the interface of both BeKm-1 and the hERG channel. All these structural and energy features yield deep insights on the high selective binding mechanism of hERG-specific peptides, present a diversity of peptide-K+ channel interactions, and also provide important clues to further study structure-function relationships of the hERG channel.
Online Inquiry
Verification code
Inquiry Basket