Beta-defensin 35
Need Assistance?
  • US & Canada:
    +
  • UK: +

Beta-defensin 35

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Beta-defensin 35 is an antibacterial peptide isolated from Mus musculus.

Category
Functional Peptides
Catalog number
BAT-013726
Sequence
EIAVCETCRLGRGKCRRACIESEKIVGWCKLNFFCCRERI
1. A novel smaller β-defensin-derived peptide is active against multidrug-resistant bacterial strains
Roberta Colicchio, et al. FASEB J. 2021 Dec;35(12):e22026. doi: 10.1096/fj.202002330RR.
Antibiotic resistance is becoming a severe obstacle in the fight against acute and chronic infectious diseases that accompany most degenerative illnesses from neoplasia to osteo-arthritis and obesity. Currently, the race is on to identify pharmaceutical molecules or combinations of molecules able to prevent or reduce the insurgence and/or progression of infectivity. Attempts to substitute antibiotics with antimicrobial peptides have, thus far, met with little success against multidrug-resistant (MDR) bacterial strains. During the last decade, we designed and studied the activity and features of human β-defensin analogs, which are salt-resistant, and hence active also under high salt concentrations as, for instance, in cystic fibrosis. Herein, we describe the design, synthesis, and major features of a new 21 aa long molecule, peptide γ2. The latter derives from the γ-core of the β-defensin natural molecules, a small fragment of these molecules still bearing high antibacterial activity. We found that peptide γ2, which contains only one disulphide bond, recapitulates most of the biological properties of natural human β-defensins and can also counteract both Gram-positive and Gram-negative MDR bacterial strains and biofilm formation. Moreover, it has great stability in human serum thereby enhancing its antibacterial presence and activity without cytotoxicity in human cells. In conclusion, peptide γ2 is a promising new weapon also in the battle against intractable infectious diseases.
2. The beta-defensin-fold family of polypeptides
Allan M Torres, Philip W Kuchel Toxicon. 2004 Nov;44(6):581-8. doi: 10.1016/j.toxicon.2004.07.011.
Polypeptides adopting a fold very similar to that of beta-defensins are found in diverse organisms, including sea anemones, snakes, platypus and humans. These molecules of approximately 35-50 amino acid residues possess disparate activities, such as anti-microbial, myonecrotic, analgesic, and ion-channel inhibiting. The family of beta-defensin-fold structures generally consists of a short helix or turn followed by a small twisted anti-parallel beta-sheet. The six cysteine residues which are paired in a 1-5, 2-4, 3-6 fashion are crucial for determining and maintaining the compact core configuration of the structures. The primary structural similarity between members of the family suggests that the global fold is robust and that the nature of the side-chains determine the functional specificity. The distinct compact fold shared by these polypeptides may be useful in the design of molecules with desired pharmacological activity.
3. Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet-Fed Rats
Sunhye Lee, Katherine I Keirsey, Rebecca Kirkland, Zachary I Grunewald, Joan G Fischer, Claire B de La Serre J Nutr. 2018 Feb 1;148(2):209-219. doi: 10.1093/jn/nxx027.
Background: Gut microbiota dysbiosis has been linked to obesity-associated chronic inflammation. Microbiota manipulation may therefore affect obesity-related comorbidities. Blueberries are rich in anthocyanins, which have anti-inflammatory properties and may alter the gut microbiota. Objective: We hypothesized that blueberry supplementation would alter the gut microbiota, reduce systemic inflammation, and improve insulin resistance in high-fat (HF)-diet-fed rats. Methods: Twenty-four male Wistar rats (260-270 g; n = 8/group) were fed low-fat (LF; 10% fat), HF (45% fat), or HF with 10% by weight blueberry powder (HF_BB) diets for 8 wk. LF rats were fed ad libitum, whereas HF and HF_BB rats were pair-fed with diets matched for fiber and sugar contents. Glucose tolerance, microbiota composition (16S ribosomal RNA sequencing), intestinal integrity [villus height, gene expression of mucin 2 (Muc2) and β-defensin 2 (Defb2)], and inflammation (gene expression of proinflammatory cytokines) were assessed. Results: Blueberry altered microbiota composition with an increase in Gammaproteobacteria abundance (P < 0.001) compared with LF and HF rats. HF feeding led to an ~15% decrease in ileal villus height compared with LF rats (P < 0.05), which was restored by blueberry supplementation. Ileal gene expression of Muc2 was ~150% higher in HF_BB rats compared with HF rats (P < 0.05), with expression in the LF group not being different from that in either the HF or HF_BB groups. Tumor necrosis factor α (Tnfa) and interleukin 1β (Il1b) gene expression in visceral fat was increased by HF feeding when compared with the LF group (by 300% and 500%, respectively; P < 0.05) and normalized by blueberry supplementation. Finally, blueberry improved markers of insulin sensitivity. Hepatic insulin receptor substrate 1 (IRS1) phosphorylation at serine 307:IRS1 ratio was ~35% higher in HF rats compared with LF rats (P < 0.05) and HF_BB rats. Conclusion: In HF-diet-fed male rats, blueberry supplementation led to compositional changes in the gut microbiota associated with improvements in systemic inflammation and insulin signaling.
Online Inquiry
Verification code
Inquiry Basket