Beta-defensin 5 precursor
Need Assistance?
  • US & Canada:
    +
  • UK: +

Beta-defensin 5 precursor

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Beta-defensin 5 precursor was found in Bos taurus. Beta-defensin 5 precursor has bactericidal activity. It is active against E.coli ML35 but not against S.aureus 502A.

Category
Functional Peptides
Catalog number
BAT-013702
Sequence
QVVRNPQSCRWNMGVCIPISCPGNMRQIGTCFGPRVPCCR
1. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases
Ana Luisa Cardoso, et al. Ageing Res Rev. 2018 Nov;47:214-277. doi: 10.1016/j.arr.2018.07.004. Epub 2018 Jul 30.
Objective: Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. Methods: Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. Results: A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. Conclusion: Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
2. Butyrate as a bioactive human milk protective component against food allergy
Lorella Paparo, et al. Allergy. 2021 May;76(5):1398-1415. doi: 10.1111/all.14625. Epub 2020 Nov 16.
Background: Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. Methods: HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. Results: The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. Conclusion: The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.
3. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory
Emma L Bishop, Aiten Ismailova, Sarah Dimeloe, Martin Hewison, John H White JBMR Plus. 2020 Sep 15;5(1):e10405. doi: 10.1002/jbm4.10405. eCollection 2021 Jan.
Regulation of immune function continues to be one of the most well-recognized extraskeletal actions of vitamin D. This stemmed initially from the discovery that antigen presenting cells such as macrophages could actively metabolize precursor 25-hydroxyvitamin D (25D) to active 1,25-dihydroxyvitamin D (1,25D). Parallel observation that activated cells from the immune system expressed the intracellular vitamin D receptor (VDR) for 1,25D suggested a potential role for vitamin D as a localized endogenous modulator of immune function. Subsequent studies have expanded our understanding of how vitamin D exerts effects on both the innate and adaptive arms of the immune system. At an innate level, intracrine synthesis of 1,25D by macrophages and dendritic cells stimulates expression of antimicrobial proteins such as cathelicidin, as well as lowering intracellular iron concentrations via suppression of hepcidin. By potently enhancing autophagy, 1,25D may also play an important role in combatting intracellular pathogens such as M. tuberculosis and viral infections. Local synthesis of 1,25D by macrophages and dendritic cells also appears to play a pivotal role in mediating T-cell responses to vitamin D, leading to suppression of inflammatory T helper (Th)1 and Th17 cells, and concomitant induction of immunotolerogenic T-regulatory responses. The aim of this review is to provide an update on our current understanding of these prominent immune actions of vitamin D, as well as highlighting new, less well-recognized immune effects of vitamin D. The review also aims to place this mechanistic basis for the link between vitamin D and immunity with studies in vivo that have explored a role for vitamin D supplementation as a strategy for improved immune health. This has gained prominence in recent months with the global coronavirus disease 2019 health crisis and highlights important new objectives for future studies of vitamin D and immune function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Online Inquiry
Verification code
Inquiry Basket