Boc-Ala-Gly-OH H2O
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-Ala-Gly-OH H2O

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-002422
CAS number
148750-86-1
Molecular Formula
C10H20N2O6
Molecular Weight
264.30
Boc-Ala-Gly-OH H2O
IUPAC Name
2-[[(2S)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoyl]amino]acetic acid;hydrate
Synonyms
Boc-O-Fluorenylmethyl ester-α-amino adipic acid H2O
InChI
InChI=1S/C10H18N2O5.H2O/c1-6(8(15)11-5-7(13)14)12-9(16)17-10(2,3)4;/h6H,5H2,1-4H3,(H,11,15)(H,12,16)(H,13,14);1H2/t6-;/m0./s1
InChI Key
KWPRIABABOYKQJ-RGMNGODLSA-N
Canonical SMILES
CC(C(=O)NCC(=O)O)NC(=O)OC(C)(C)C.O
1. Individualized versus Fixed Positive End-expiratory Pressure for Intraoperative Mechanical Ventilation in Obese Patients: A Secondary Analysis
Philipp Simon, et al. Anesthesiology. 2021 Jun 1;134(6):887-900. doi: 10.1097/ALN.0000000000003762.
Background: General anesthesia may cause atelectasis and deterioration in oxygenation in obese patients. The authors hypothesized that individualized positive end-expiratory pressure (PEEP) improves intraoperative oxygenation and ventilation distribution compared to fixed PEEP. Methods: This secondary analysis included all obese patients recruited at University Hospital of Leipzig from the multicenter Protective Intraoperative Ventilation with Higher versus Lower Levels of Positive End-Expiratory Pressure in Obese Patients (PROBESE) trial (n = 42) and likewise all obese patients from a local single-center trial (n = 54). Inclusion criteria for both trials were elective laparoscopic abdominal surgery, body mass index greater than or equal to 35 kg/m2, and Assess Respiratory Risk in Surgical Patients in Catalonia (ARISCAT) score greater than or equal to 26. Patients were randomized to PEEP of 4 cm H2O (n = 19) or a recruitment maneuver followed by PEEP of 12 cm H2O (n = 21) in the PROBESE study. In the single-center study, they were randomized to PEEP of 5 cm H2O (n = 25) or a recruitment maneuver followed by individualized PEEP (n = 25) determined by electrical impedance tomography. Primary endpoint was Pao2/inspiratory oxygen fraction before extubation and secondary endpoints included intraoperative tidal volume distribution to dependent lung and driving pressure. Results: Ninety patients were evaluated in three groups after combining the two lower PEEP groups. Median individualized PEEP was 18 (interquartile range, 16 to 22; range, 10 to 26) cm H2O. Pao2/inspiratory oxygen fraction before extubation was 515 (individual PEEP), 370 (fixed PEEP of 12 cm H2O), and 305 (fixed PEEP of 4 to 5 cm H2O) mmHg (difference to individualized PEEP, 145; 95% CI, 91 to 200; P < 0.001 for fixed PEEP of 12 cm H2O and 210; 95% CI, 164 to 257; P < 0.001 for fixed PEEP of 4 to 5 cm H2O). Intraoperative tidal volume in the dependent lung areas was 43.9% (individualized PEEP), 25.9% (fixed PEEP of 12 cm H2O) and 26.8% (fixed PEEP of 4 to 5 cm H2O) (difference to individualized PEEP: 18.0%; 95% CI, 8.0 to 20.7; P < 0.001 for fixed PEEP of 12 cm H2O and 17.1%; 95% CI, 10.0 to 20.6; P < 0.001 for fixed PEEP of 4 to 5 cm H2O). Mean intraoperative driving pressure was 9.8 cm H2O (individualized PEEP), 14.4 cm H2O (fixed PEEP of 12 cm H2O), and 18.8 cm H2O (fixed PEEP of 4 to 5 cm H2O), P < 0.001. Conclusions: This secondary analysis of obese patients undergoing laparoscopic surgery found better oxygenation, lower driving pressures, and redistribution of ventilation toward dependent lung areas measured by electrical impedance tomography using individualized PEEP. The impact on patient outcome remains unclear.
2. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling
Hui Wang, Guoliang Li, Qian-Shu Li, Yaoming Xie, Henry F Schaefer 3rd J Phys Chem B. 2016 Mar 3;120(8):1743-8. doi: 10.1021/acs.jpcb.5b09253. Epub 2015 Nov 25.
The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.
3. H2O nucleation around Au+
J Ulises Reveles, Patrizia Calaminici, Marcela R Beltrán, Andres M Köster, Shiv N Khanna J Am Chem Soc. 2007 Dec 19;129(50):15565-71. doi: 10.1021/ja074336l. Epub 2007 Nov 23.
First principles electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure, and the binding energy of [Au(H2O)n]+ clusters containing up to 10 H2O molecules. It is shown that the first coordination shell of Au+ contains two H2O molecules forming a H2O-Au+-H2O structure with C2 symmetry. Subsequent H2O molecules bind to the previous H2O molecules forming stable and fairly rigid rings, each composed of 4 H2O molecules, and leading to a dumbbell structure at [Au(H2O)8]+. The 9th and the 10th H2O molecules occupy locations above the Au+ cation mainly bonded to one H2O from each ring, leading to structures where the side rings are partially distorted and forming structures that resemble droplet formation around the Au+ cation. The investigations highlight quantum effects in nucleation at small sizes and provide a microscopic understanding of the observed incremental binding energy deduced from collision induced dissociation that indicates that [Au(H2O)n]+ clusters with 7-10 H2O molecules have comparable binding energy. The charge on the Au+ is shown to migrate to the outside H2O molecules, suggesting an interesting screening phenomenon.
Online Inquiry
Verification code
Inquiry Basket