Boc-D-α-aminobutyric acid dicyclohexylammonium salt
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-D-α-aminobutyric acid dicyclohexylammonium salt

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-007093
CAS number
27494-47-9
Molecular Formula
C9H17NO4·C12H23N
Molecular Weight
384.55
Boc-D-α-aminobutyric acid dicyclohexylammonium salt
IUPAC Name
N-cyclohexylcyclohexanamine;(2R)-2-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid
Synonyms
Boc-D-Abu-OH DCHA; Boc-D-2-aminobutanoic acid dicyclohexylammonium salt; Boc D Abu OH DCHA
Appearance
White powder
Purity
99%
Boiling Point
334.5°C at 760 mmHg
Storage
Store at 2-8 °C
InChI
InChI=1S/C12H23N.C9H17NO4/c1-3-7-11(8-4-1)13-12-9-5-2-6-10-12;1-5-6(7(11)12)10-8(13)14-9(2,3)4/h11-13H,1-10H2;6H,5H2,1-4H3,(H,10,13)(H,11,12)/t;6-/m.1/s1
InChI Key
HOSMYZXDFVUSCV-FCXZQVPUSA-N
Canonical SMILES
CCC(C(=O)O)NC(=O)OC(C)(C)C.C1CCC(CC1)NC2CCCCC2
1. The formation of 2-hydroxypropylmercapturic acid from 1-halogenopropanes in the rat
E A Barnsley Biochem J. 1966 Aug;100(2):362-72. doi: 10.1042/bj1000362.
1. 2-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(2-hydroxypropyl)-l-cysteine, has been isolated, as the dicyclohexylammonium salt, from the urine of rats dosed with 1-bromopropane. 2. The formation of the same metabolite from 1-chloropropane, 1-iodopropane, 1,2-epoxypropane and 1-chloropropan-2-ol has been demonstrated by chromatographic examination of the urine excreted by rats after they had been dosed with these compounds. 3. (+)- and (-)-Dicyclohexylammonium 2-hydroxypropylmercapturate have been prepared by fractional crystallization of the mixture of isomers obtained by two methods: the reaction of 1,2-epoxypropane with l-cysteine followed by acetylation, and the reduction of 2-oxopropylmercapturic acid. 4. The following compounds have also been prepared: S-(3-hydroxypropyl)-l-cysteine, (+)- and (-)-S-(2-hydroxypropyl)-l-cysteine, dicyclohexylammonium 3-hydroxypropylmercapturate, (+)- and (-)-dicyclohexylammonium 2-hydroxy-1-methylethylmercapturate, and (+)- and (-)-dicyclohexylammonium 1-(ethoxycarbonyl)ethylmercapturate.
2. Some metabolites of 1-bromobutane in the rabbit and the rat
S P James, D A Jeffery, R H Waring, P B Wood Biochem J. 1968 Oct;109(5):727-36. doi: 10.1042/bj1090727.
1. Rabbits and rats dosed with 1-bromobutane excrete in urine, in addition to butylmercapturic acid, (2-hydroxybutyl)mercapturic acid, (3-hydroxybutyl)mercapturic acid and 3-(butylthio)lactic acid. 2. Although both species excrete both the hydroxybutylmercapturic acids, only traces of the 2-isomer are excreted by the rabbit. The 3-isomer has been isolated from rabbit urine as the dicyclohexylammonium salt. 3. 3-(Butylthio)lactic acid is formed more readily in the rabbit; only traces are excreted by the rat. 4. Traces of the sulphoxide of butylmercapturic acid have been found in rat urine but not in rabbit urine. 5. In the rabbit about 14% and in the rat about 22% of the dose of 1-bromobutane is excreted in the form of the hydroxymercapturic acids. 6. Slices of rat liver incubated with S-butylcysteine or butylmercapturic acid form both (2-hydroxybutyl)mercapturic acid and (3-hydroxybutyl)mercapturic acid, but only the 3-hydroxy acid is formed by slices of rabbit liver. 7. S-Butylglutathione, S-butylcysteinylglycine and S-butylcysteine are excreted in bile by rats dosed with 1-bromobutane. 8. Rabbits and rats dosed with 1,2-epoxybutane excrete (2-hydroxybutyl)mercapturic acid to the extent of about 4% and 11% of the dose respectively. 9. The following have been synthesized: N-acetyl-S-(2-hydroxybutyl)-l-cysteine [(2-hydroxybutyl)mercapturic acid] and N-acetyl-S-(3-hydroxybutyl)-l-cysteine [(3-hydroxybutyl)mercapturic acid] isolated as dicyclohexylammonium salts, N-toluene-p-sulphonyl-S-(2-hydroxybutyl)-l-cysteine, S-butylglutathione and N-acetyl-S-butylcysteinyl-glycine ethyl ester.
3. Fumagillin: an overview of recent scientific advances and their significance for apiculture
Johan P van den Heever, Thomas S Thompson, Jonathan M Curtis, Abdullah Ibrahim, Stephen F Pernal J Agric Food Chem. 2014 Apr 2;62(13):2728-37. doi: 10.1021/jf4055374. Epub 2014 Mar 21.
Fumagillin is a potent fungal metabolite first isolated from Aspergillus fumigatus. It is widely used in apiculture and human medicine against a variety of microsporidian fungal infections. It has been the subject of research in cancer treatments by employing its angiogenesis inhibitory properties. The toxicity of fumagillin has limited its use for human applications and spurred the development of analogues using structure-activity relationships relating to its angiogenesis properties. These discoveries may hold the key to the development of alternative chemical treatments for use in apiculture. The toxicity of fumagillin to humans is important for beekeeping, because any residues remaining in hive products pose a direct risk to the consumer. The analytical methods published to date measure fumagillin and its decomposition products but overlook the dicyclohexylamine counterion of the salt form widely used in apiculture.
Online Inquiry
Verification code
Inquiry Basket