1.Evidence for an enantioselective pumiliotoxin 7-hydroxylase in dendrobatid poison frogs of the genus Dendrobates.
Daly JW1, Garraffo HM, Spande TF, Clark VC, Ma J, Ziffer H, Cover JF Jr. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11092-7. Epub 2003 Sep 5.
Dendrobatid poison frogs readily accumulate alkaloids from diet into skin, where such compounds serve as a chemical defense against predators. Arthropods seem to be the source of decahydroquinolines (DHQs), several izidines, coccinellines, spiropyrrolizidines, pumiliotoxins (PTXs), and allopumiliotoxins (aPTXs). A DHQ iso-223F, and PTX (+)-251D were fed to poison frogs of the dendrobatid genera Dendrobates, Epipedobates, and Phyllobates. The two alkaloids were accumulated in skin unchanged except for the three species of Dendrobates, where approximately 80% of accumulated PTX (+)-251D was stereoselectively hydroxylated to aPTX (+)-267A. The unnatural enantiomer PTX (-)-251D was accumulated efficiently when fed to Dendrobates auratus, but was not hydroxylated. The enantiomers of PTX 251D and their desmethyl analogs were synthesized from N-Boc-protected (-)- and (+)-proline methyl esters. Both PTX (+)-251D and aPTX (+)-267A proved to be potent convulsants in mice, with (+)-267A being approximately 5-fold more toxic than (+)-251D.
2.Synthesis of conformationally constrained 5-fluoro- and 5-hydroxymethanopyrrolidines. Ring-puckered mimics of gauche- and anti-3-fluoro- and 3-hydroxypyrrolidines.
Krow GR1, Edupuganti R, Gandla D, Yu F, Sender M, Sonnet PE, Zdilla MJ, DeBrosse C, Cannon KC, Ross CW 3rd, Choudhary A, Shoulders MD, Raines RT. J Org Chem. 2011 May 20;76(10):3626-34. doi: 10.1021/jo200117p. Epub 2011 Apr 18.
N-acetylmethanopyrrolidine methyl ester and its four 5-syn/anti-fluoro and hydroxy derivatives have been synthesized from 2-azabicyclo[2.2.0]hex-5-ene, a 1,2-dihydropyridine photoproduct. These conformationally constrained mimics of idealized C(β)-gauche and C(β)-anti conformers of pyrrolidines were prepared in order to determine the inherent bridge bias and subsequent heteroatom substituent effects upon trans/cis amide preferences. The bridgehead position and also the presence of gauche(syn)/anti-5-fluoro or 5-hydroxy substituents have minimal influence upon the K(T/C) values of N-acetylamide conformers in both CDCl(3) (43-54% trans) and D(2)O (53-58% trans). O-Benzoylation enhances the trans amide preferences in CDCl(3) (65% for a syn-OBz, 61% for an anti-OBz) but has minimal effect in D(2)O. The synthetic methods developed for N-BOC-methanopyrrolidines should prove useful in the synthesis of more complex derivatives containing α-ester substituents.
3.Synthesis of a hydroxyethylene isostere of the tripeptide Arg-Gly-Leu via a convergent acyl-like radical addition strategy.
Jensen CM1, Lindsay KB, Andreasen P, Skrydstrup T. J Org Chem. 2005 Sep 16;70(19):7512-9.
[reaction: see text] A hydroxyethylene isostere of the tripeptide Arg-Gly-Leu, representing an important fragment of a novel cyclic-peptide-based uPA inhibitor, was synthesized in few steps employing as the key step a samarium diiodide promoted coupling of either the 4-thiopyridyl ester of N(alpha)-Fmoc- or N(alpha)-Cbz-protected L-ornithine with the N-acryloyl derivative of L-leucine methyl ester. Epimerization under the coupling conditions at the chiral center in the alpha-position to the ketone was demonstrated not to take place. A stereoselective reduction of the Cbz-protected aminoketone obtained from this radical reaction was promoted by the same single-electron reducing agent in the presence of methanol providing the syn-amino alcohol with a diastereoselectivity of 85:15. With the use of lithium tri-tert-butoxyaluminum hydride in methanol, the corresponding anti-isomer was obtained almost exclusively. Subsequent elaboration of the ornithine moiety in the anti-isomer by introduction of the guanidine group followed by hydrolysis of the C-terminal ester bond and protection of the alcohol as its tert-butyldimethylsilyl ether provided the desired tripeptide mimic.
4.Synthesis of 5-fluoro- and 5-hydroxymethanoprolines via lithiation of N-BOC-methanopyrrolidines. Constrained Cγ-exo and Cγ-endo Flp and Hyp conformer mimics.
Krow GR1, Shoulders MD, Edupuganti R, Gandla D, Yu F, Sonnet PE, Sender M, Choudhary A, DeBrosse C, Ross CW 3rd, Carroll P, Raines RT. J Org Chem. 2012 Jun 15;77(12):5331-44. doi: 10.1021/jo300700a. Epub 2012 May 25.
Proline derivatives with a C(γ)-exo pucker typically display a high amide bond trans/cis (K(T/C)) ratio. This pucker enhances n→π* overlap of the amide oxygen and ester carbonyl carbon, which favors a trans amide bond. If there were no difference in n→π* interaction between the ring puckers, then the correlation between ring pucker and K(T/C) might be broken. To explore this possibility, proline conformations were constrained using a methylene bridge. We synthesized discrete gauche and anti 5-fluoro- and 5-hydroxy-N-acetylmethanoproline methyl esters from 3-syn and 3-anti fluoro- and hydroxymethanopyrrolidines using directed α-metalation to introduce the α-ester group. NBO calculations reveal minimal n→π* orbital interactions, so contributions from other forces might be of greater importance in determining K(T/C) for the methanoprolines. Consistent with this hypothesis, greater trans amide preferences were found in CDCl(3) for anti isomers en-MetFlp and en-MetHyp (72-78% trans) than for the syn stereoisomers ex-MetFlp and ex-MetHyp (54-67% trans).