Boc-D-Thr(Allyl)-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-D-Thr(Allyl)-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-008343
Molecular Formula
C12H21NO5
Molecular Weight
259.3
Synonyms
(2R,3S)-3-(allyloxy)-2-((tert-butoxycarbonyl)amino)butanoic acid
1. Regioselective trans-Carboboration of Propargyl Alcohols
Hongming Jin, Alois Fürstner Org Lett. 2019 May 3;21(9):3446-3450. doi: 10.1021/acs.orglett.9b01225. Epub 2019 Apr 17.
Proper choice of the base allowed trans-diboration of propargyl alcohols with B2(pin)2 to evolve into an exquisitely regioselective procedure for net trans-carboboration. The method is modular as to the newly introduced carbon substituent (aryl, methyl, allyl, benzyl, alkynyl), which is invariably placed distal to the -OH group.
2. Reductive Cross-Coupling of Unreactive Electrophiles
Xiaobo Pang, Pei-Feng Su, Xing-Zhong Shu Acc Chem Res. 2022 Sep 6;55(17):2491-2509. doi: 10.1021/acs.accounts.2c00381. Epub 2022 Aug 11.
Transition-metal-catalyzed reductive coupling of electrophiles has emerged as a powerful tool for the construction of molecules. While major achievements have been made in the field of cross-couplings between organic halides and pseudohalides, an increasing number of reports demonstrates reactions involving more readily available, low-cost, and stable, but unreactive electrophiles. This account summarizes the recent results in our laboratory focusing on this topic. These findings typically include deoxygenative C-C coupling of alcohols, reductive alkylation of alkenyl acetates, reductive C-Si coupling of chlorosilanes, and reductive C-Ge coupling of chlorogermanes.The reductive deoxygenative coupling of alcohols with electrophiles is synthetically appealing, but the potential of this chemistry remains to be disclosed. Our initial study focused on the reaction of allylic alcohols and aryl bromides by the combination of nickel and Lewis acid catalysis. This method offers a selectivity that is opposite to that of the classic Tsuji-Trost reactions. Further investigation on the reaction of benzylic alcohols led to the foundation of a dynamic kinetic cross-coupling strategy with applications in the nickel-catalyzed reductive arylation of benzylic alcohols and cobalt-catalyzed enantiospecific reductive alkenylation of allylic alcohols. The titanium catalysis was later established to produce carbon radicals directly from unactivated tertiary alcohols via C-OH cleavage. The development of their coupling reactions with carbon fragments delivers new methods for the construction of all-carbon quaternary centers. These reactions have shown high selectivity for the functionalization of tertiary alcohols, leaving primary and secondary alcohols intact. Alkenyl acetates are inexpensive, stable, and environmentally friendly and are considered the most attractive alkenyl reagents. The development of reductive alkylation of alkenyl acetates with benzyl ammoniums and alkyl bromides offers mild approaches for the conversion of ketones into aliphatic alkenes.Extensive studies in this field have enabled us to extend the cross-electrophile coupling from carbon to silicon and germanium chemistry. These reactions harness the ready availability of chlorosilanes and chlorogermanes but suffer from the challenge of their low reactivity toward transition metals. Under reductive nickel catalysis, a broad range of alkenyl and aryl electrophiles couple well with vinyl- and hydrochlorosilanes. The use of alkyl halides as coupling partners led to the formation of functionalized alkylsilanes. The C-Ge coupling seems less substrate-dependent, and various common chlorogermanes couple well with aryl, alkenyl, and alkyl electrophiles. In general, functionalities such as Grignard-sensitive groups (e.g., acid, amide, alcohol, ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine are tolerated. These methods provide new access to organosilicon and organogermanium compounds, some of which are challenging to obtain otherwise.
3. A TCF-Based Carbon Monoxide NIR-Probe without the Interference of BSA and Its Application in Living Cells
Yingxu Wu, Xiaojing Deng, Lan Ye, Wei Zhang, Hu Xu, Boyu Zhang Molecules. 2022 Jun 28;27(13):4155. doi: 10.3390/molecules27134155.
As toxic gaseous pollution, carbon monoxide (CO) plays an essential role in many pathological and physiological processes, well-known as the third gasotransmitter. Owning to the reducibility of CO, the Pd0-mediated Tsuji-Trost reaction has drawn much attention in CO detection in vitro and in vivo, using allyl ester and allyl ether caged fluorophores as probes and PdCl2 as co-probes. Because of its higher decaging reactivity than allyl ether in the Pd0-mediated Tsuji-Trost reaction, the allyl ester group is more popular in CO probe design. However, during the application of allyl ester caged probes, it was found that bovine serum albumin (BSA) in the fetal bovine serum (FBS), an irreplaceable nutrient in cell culture media, could hydrolyze the allyl ester bond, and thus give erroneous imaging results. In this work, dicyanomethylenedihydrofuran (TCF) and dicyanoisophorone (DCI) were selected as electron acceptors for constructing near-infrared-emission fluorophores with electron donor phenolic OH. An allyl ester and allyl ether group were installed onto TCF-OH and DCI-OH, constructing four potential CO fluorescent probes, TCF-ester, TCF-ether, DCI-ester, and DCI-ether. Our data revealed that ester bonds of TCF-ester and DCI-ester could completely hydrolyze in 20 min, but ether bonds in TCF-ether and DCI-ether tolerate the hydrolysis of BSA and no released fluorescence was observed even up to 2 h. Moreover, passing through the screen, it was concluded that TCF-ether is superior to DCI-ether due to its higher reactivity in a Pd0-mediated Tsuji-Trost reaction. Also, the large stokes shift of TCF-OH, absorption and emission at 408 nm and 618 nm respectively, make TCF-ether desirable for fluorescent imaging because of differentiating signals from the excitation light source. Lastly, TCF-ether has been successfully applied to the detection of CO in H9C2 cells.
Online Inquiry
Verification code
Inquiry Basket