1.Serum Uric Acid Is Positively Associated with Handgrip Strength among Japanese Community-Dwelling Elderly Women.
Kawamoto R1,2, Ninomiya D1,2, Kasai Y2, Kusunoki T2, Ohtsuka N2, Kumagi T1, Abe M1. PLoS One. 2016 Apr 14;11(4):e0151044. doi: 10.1371/journal.pone.0151044. eCollection 2016.
Serum uric acid (UA) has strong anti-oxidant properties. Muscle strength and mass decrease with age, and recently, this decrease has been defined as sarcopenia. Sarcopenia may be triggered by oxidative stress. We investigated whether serum UA is associated with handgrip strength (HGS), which is a useful indicator of sarcopenia, among Japanese community-dwelling elderly persons. The present study included 602 men aged 72 ± 7 years and 847 women aged 71 ± 6 years from a rural village. We examined the cross-sectional relationship between serum UA and HGS. In both genders, HGS increased significantly with increased serum UA levels. A multiple linear regression analysis using HGS as an objective variable and various confounding factors as explanatory variables showed that in men age, drinking status, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and estimated glomerular filtration ratio (eGFRCKDEPI) were independently and significantly associated with HGS, and in women, serum UA as well as age, body mass index, drinking status, diastolic blood pressure, and eGFRCKDEPI were independently and significantly associated with HGS.
2.Neurochemical Changes Associated with Stress-Induced Sleep Disturbance in Rats: In Vivo and In Vitro Measurements.
Lee DW1,2, Chung S3, Yoo HJ4, Kim SJ4, Woo CW2, Kim ST2, Lee DH1, Kim KW5, Kim JK5, Lee JS5, Choi CG5, Shim WH5, Choi Y2, Woo DC2. PLoS One. 2016 Apr 14;11(4):e0153346. doi: 10.1371/journal.pone.0153346. eCollection 2016.
The goal of this study was to quantitatively assess the changes in the cerebral neurochemical profile and to identify those factors that contribute to the alteration of endogenous biomolecules when rats are subjected to stress-induced sleep disturbance. We exposed Sprague-Dawley rats (controls: n = 9; stress-induced sleep perturbation rats: n = 11) to a psychological stressor (cage exchange method) to achieve stress-induced sleep perturbation. In vivo magnetic resonance imaging assessments were carried out using a high-resolution 9.4 T system. For in vivo neurochemical analysis, a single voxel was localized in the right dorsal hippocampal region, and in vivo spectra were quantified for 17 cerebral neurochemical signals. Rats were sacrificed upon completion of the magnetic resonance spectroscopy protocol, and whole-brain tissue was harvested from twenty subjects. The dopamine and serotonin signals were obtained by performing in vitro liquid chromatography-tandem mass spectrometry on the harvested tissue.
3.Neutrophil Isolation and Analysis to Determine their Role in Lymphoma Cell Sensitivity to Therapeutic Agents.
Hirz T1, Dumontet C2. J Vis Exp. 2016 Mar 25;(109). doi: 10.3791/53846.
Neutrophils are the most abundant (40% to 75%) type of white blood cells and among the first inflammatory cells to migrate towards the site of inflammation. They are key players in the innate immune system and play major roles in cancer biology. Neutrophils have been proposed as key mediators of malignant transformation, tumor progression, angiogenesis and in the modulation of the antitumor immunity; through their release of soluble factors or their interaction with tumor cells. To characterize the specific functions of neutrophils, a fast and reliable method is coveted for in vitro isolation of neutrophils from human blood. Here, a density gradient separation method is demonstrated to isolate neutrophils as well as mononuclear cells from the blood. The procedure consists of layering the density gradient solution such as Ficoll carefully above the diluted blood obtained from patients diagnosed with chronic lymphocytic leukemia (CLL), followed by centrifugation, isolation of mononuclear layer, separation of neutrophils from RBCsby dextran then lysis of residual erythrocytes.
4.Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.
Gonçalves-de-Albuquerque CF1, Medeiros-de-Moraes IM1, Oliveira FM1, Burth P2, Bozza PT1, Castro Faria MV3, Silva AR1, Castro-Faria-Neto HC1,4. PLoS One. 2016 Apr 14;11(4):e0153607. doi: 10.1371/journal.pone.0153607. eCollection 2016.
Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA.