Boc-NH-2,6,6-Me3-BCheptane-COOH(S,S,R,S)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-NH-2,6,6-Me3-BCheptane-COOH(S,S,R,S)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Bicyclic Amino Acids
Catalog number
BAT-000768
CAS number
705949-07-1
Molecular Formula
C16H27NO4
Molecular Weight
297.39
IUPAC Name
2,6,6-trimethyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]bicyclo[3.1.1]heptane-3-carboxylic acid
Synonyms
N-Boc (1S,2S,3R,5S)-2-amino-2,6,6-trimethylbicyclo[3.1.1]heptane-3-carboxylic acid; (1S,2S,3R,5S)-2-[(tert-butoxycarbonyl)amino]-2,6,6-trimethylbicyclo[3.1.1]heptane-3-carboxylic acid
Storage
Store at 2-8 °C
InChI
InChI=1S/C16H27NO4/c1-14(2,3)21-13(20)17-16(6)10(12(18)19)7-9-8-11(16)15(9,4)5/h9-11H,7-8H2,1-6H3,(H,17,20)(H,18,19)
InChI Key
HPPGXULZNFVFMM-UHFFFAOYSA-N
Canonical SMILES
CC1(C2CC(C(C1C2)(C)NC(=O)OC(C)(C)C)C(=O)O)C
1. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer
Shiaw-Lin Wu, Ian Jardine, William S Hancock, Barry L Karger Rapid Commun Mass Spectrom. 2004;18(19):2201-7. doi: 10.1002/rcm.1609.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.
2. Profiling of N-acyl-homoserine lactones by liquid chromatography coupled with electrospray ionization and a hybrid quadrupole linear ion-trap and Fourier-transform ion-cyclotron-resonance mass spectrometry (LC-ESI-LTQ-FTICR-MS)
Tommaso R I Cataldi, Giuliana Bianco, Salvatore Abate J Mass Spectrom. 2008 Jan;43(1):82-96. doi: 10.1002/jms.1275.
A method for the comprehensive profiling of the N-acyl-homoserine lactone (AHL) family of bacterial quorum-sensing molecules is presented using liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier-transform ion-cyclotron-resonance mass spectrometer (FTICR). We demonstrate an increase in signal intensity in MS with electrospray ionization (ESI) of the protonated molecules, [M + H](+), by using acetonitrile (ACN) instead of methanol (MeOH) as the organic solvent under the conditions in which the samples were supplied to the probe by direct infusion at constant flow rates. The presence of ACN prevents the formation of methanol adducts such as [M + MeOH + H](+) and [M + MeOH + Na](+), while also lowering the signal intensity of sodiated [M + Na](+) ions. Sensitivity of these signaling molecules in terms of signal-to-noise ratio (S/N) using low-resolution LTQ-MS and high-resolution FTICR-MS were compared under reversed-phase (RP) LC separations with ESI interface. Special emphasis was paid to the choice of the separation column, its elution conditions and detection of the major AHL compounds produced by the Serratia liquefaciens strain ATCC 27592. The most promising results were obtained using a RP C16-amide column eluted with a linear mobile phase gradient ACN/H(2)O containing 0.1% formic acid. The whole set of AHL homologs in bacterial extracts was detected in the extracted-ion chromatographic (XIC) mode, and the calculations of molecular formulae were performed by including the isotopic pattern. This mode of displaying data, with a very narrow mass-to-charge ratio window (i.e. +/- 0.0010 as m/z unit) around each selected ion, has allowed the identification of all the eight known homoserine lactones, viz. C(4)-HSL, 3-oxo-C(6)-HSL, C(6)-HSL, 3-oxo-C(8)-HSL, C(8)-HSL, C(10)-HSL, C(12)-HSL and C(14)-HSL. In addition, at least four uncommon signaling mediators previously unreported, namely, 3-oxo-C(10:1)-HSL, 3-oxo-C(11:2)-HSL, 3-oxo-C(13:2)-HSL and 3-OH-C(16)-HSL, were identified and characterized; their roles in cell-to-cell communication has to be elucidated.
3. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry
Giuliana Bianco, Salvatore Abate, Cristiana Labella, Tommaso R I Cataldi Rapid Commun Mass Spectrom. 2009 Apr;23(7):1065-74. doi: 10.1002/rcm.3969.
Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI-FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in-source ion trap collision-induced dissociation (CID) of the protonated molecules, [M+H](+). A retro-Diels-Alder (RDA) process along with ring-contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH(3)NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO(2) or CO. The uracil derivatives showed a loss of a ketene unit (CH(2)CO, 42 Da) from the protonated molecule along with the loss of H(2)O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N-acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake.
Online Inquiry
Verification code
Inquiry Basket