2. Immunoregulatory and Antimicrobial Activity of Bovine Neutrophil β-Defensin-5-Loaded PLGA Nanoparticles against Mycobacterium bovis
Zhengmin Liang, Yiduo Liu, Xingya Sun, Jingjun Lin, Jiao Yao, Yinjuan Song, Miaoxuan Li, Tianlong Liu, Xiangmei Zhou Pharmaceutics. 2020 Dec 1;12(12):1172. doi: 10.3390/pharmaceutics12121172.
Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate. In this study, we formulated PLGA nanoparticles (NPs) encapsulating the recombinant protein bovine neutrophil β-defensin-5 (B5), and investigated its role in immunomodulation and antimicrobial activity against M. bovis challenge. Using the classical water-oil-water solvent-evaporation method, B5-NPs were prepared, with encapsulation efficiency of 85.5% ± 2.5%. These spherical NPs were 206.6 ± 26.6 nm in diameter, with a negatively charged surface (ζ-potential -27.1 ± 1.5 mV). The encapsulated B5 protein from B5-NPs was released slowly under physiological conditions. B5 or B5-NPs efficiently enhanced the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-10 in J774A.1 macrophages. B5-NPs-immunized mice showed significant increases in the production of TNF-α and immunoglobulin A (IgA) in serum, and the proportion of CD4+ T cells in spleen compared with B5 alone. In immunoprotection studies, B5-NPs-immunized mice displayed significant reductions in pulmonary inflammatory area, bacterial burden in the lungs and spleen at 4-week after M. bovis challenge. In treatment studies, B5, but not B5-NPs, assisted rifampicin (RIF) with inhibition of bacterial replication in the lungs and spleen. Moreover, B5 alone also significantly reduced the bacterial load in the lungs and spleen. Altogether, our findings highlight the significance of the B5-PLGA NPs in terms of promoting the immune effect of BCG and the B5 in enhancing the therapeutic effect of RIF against M. bovis.
3. Intranasal bovine β-defensin-5 enhances antituberculosis immunity in a mouse model by a novel protein-based respiratory mucosal vaccine
Zhengmin Liang, Hao Li, Mengjin Qu, Yiduo Liu, Yuanzhi Wang, Haoran Wang, Yuhui Dong, Yulan Chen, Xin Ge, Xiangmei Zhou Virulence. 2022 Dec;13(1):949-962. doi: 10.1080/21505594.2022.2080342.
Respiratory mucosal immunization is an effective immunization strategy against tuberculosis (TB), and effective mucosal vaccines require adjuvants that can promote protective immunity without deleterious inflammation. Mucosal BCG (Bacille Calmette-Guerin) is effective, but it causes a severe inflammatory response in the lung. A novel less cytotoxic mucosal vaccine AH-PB containing Mycobacterium tuberculosis (Mtb) cell surface antigens Ag85A and HspX (AH), as well as polyinosinic-polycytidylic acid (Poly IC) and bovine neutrophil β-defensin-5 (B5) adjuvants were prepared, with the overarching goal of protecting against TB. Then, the immunogenicity and protective efficacy of these vaccines via the intranasal route were evaluated in a mouse model. Results showed that intranasal AH-PB promoted tissue-resident memory T cells (TRMs) development in the lung, induced antigen-specific antibody response in airway, provided protection against Mycobacterium bovis (M. bovis), conferred better protection than parenteral BCG in the later stage of infection, and boosted the protective immunity generated by BCG in mice. Moreover, both B5 and Poly IC were indispensable for the protection generated by AH-PB. Furthermore, intranasal immunization with AH-B5 fusion vaccines also provided similar protection against M. bovis compared to AH-PB. Collectively, B5-based TB vaccine via the intranasal route is a promising immunization strategy against bovine TB, and this kind of immunization strategy may be applied to human TB vaccine development. These findings highlight the potential importance of B5 as a mucosal adjuvant used in TB vaccines or other respiratory disease vaccines.