Need Assistance?
  • US & Canada:
    +
  • UK: +

BQ-788

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

BQ-788 is a potent and selective ETB receptor antagonist with an IC50 of 1.2 nM.

Category
Peptide Inhibitors
Catalog number
BAT-015396
CAS number
173326-37-9
Molecular Formula
C34H51N5O7
Molecular Weight
641.80
BQ-788
IUPAC Name
(2R)-2-[[(2R)-2-[[(2S)-2-[[(2S,6R)-2,6-dimethylpiperidine-1-carbonyl]amino]-4,4-dimethylpentanoyl]amino]-3-(1-methoxycarbonylindol-3-yl)propanoyl]amino]hexanoic acid
Synonyms
BQ-788 free acid; D-Norleucine, N-((cis-2,6-dimethyl-1-piperidinyl)carbonyl)-4-methyl-L-leucyl-1-(methoxycarbonyl)-D-tryptophyl-; N-cis-2,6-Dimethylpiperidinocarbonyl-β-tBu-Ala-D-Trp(1-methoxycarbonyl)-D-Nle-OH
Appearance
White Lyophilized Powder
Purity
95%
Density
1.23±0.1 g/cm3 (Predicted)
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C34H51N5O7/c1-8-9-16-25(31(42)43)35-29(40)26(18-23-20-38(33(45)46-7)28-17-11-10-15-24(23)28)36-30(41)27(19-34(4,5)6)37-32(44)39-21(2)13-12-14-22(39)3/h10-11,15,17,20-22,25-27H,8-9,12-14,16,18-19H2,1-7H3,(H,35,40)(H,36,41)(H,37,44)(H,42,43)/t21-,22+,25-,26-,27+/m1/s1
InChI Key
LPAHKJMGDSJDRG-DJYQTOCQSA-N
Canonical SMILES
CCCCC(C(=O)O)NC(=O)C(CC1=CN(C2=CC=CC=C21)C(=O)OC)NC(=O)C(CC(C)(C)C)NC(=O)N3C(CCCC3C)C
1. Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ-788
K Noguchi, T Fukami, K Ishikawa, T Nagase, S Ozaki, T Fukuroda, T Mase, N Mino, M Ihara, T Saeki Proc Natl Acad Sci U S A . 1994 May 24;91(11):4892-6. doi: 10.1073/pnas.91.11.4892.
We describe the characteristics of a potent and selective endothelin (ET) B-receptor antagonist, BQ-788 [N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D -1- methoxycarbonyltryptophanyl-D-norleucine]. In vitro, this compound potently and competitively inhibits 125I-labeled endothelin 1 (ET-1) binding to ETB receptors on human Girardi heart cells (IC50, 1.2 nM) but only poorly inhibits the binding to ETA receptors on human neuroblastoma cell line SK-N-MC cells (IC50, 1300 nM). In isolated rabbit pulmonary arteries, BQ-788 shows no agonist activity up to 10 microM and competitively antagonizes the vasoconstriction induced by an ETB-selective agonist, BQ-3020 (pA2, 8.4). In rat, an ETA-selective antagonist, BQ-123 (1 mg/kg, i.v.), does not affect transient depressor response to ET-1 (0.3 nmol/kg, i.v.) but potently inhibits following sustained pressor response; vice versa, BQ-788 (1 mg/kg, i.v.) abolishes the depressor response, resulting in a rapid onset of apparently enhanced pressor response. Thus, being a potent and selective ETB receptor antagonist, BQ-788 may be considered as a powerful tool for investigating the role of ET in physiological and pathological processes.
2. Effects of phosphoramidon, BQ 788, and BQ 123 on coronary and cardiac dysfunctions of the failing hamster heart
L Dumont, G Jasmin, E R Fontaine, S Viau J Cardiovasc Pharmacol . 1998 Jul;32(1):12-20. doi: 10.1097/00005344-199807000-00003.
Coronary dysfunctions identified in the presence of chronic heart failure are an important pathophysiologic abnormality that influences the prognosis of the disease. Because the endothelin pathway plays a significant role in the increased peripheral vascular tone associated with heart failure, we hypothesized that the endothelin pathway may be involved in the abnormal coronary vasomotion associated with this pathologic condition. Experiments were carried out in failing hearts (UM-X7.1 cardiomyopathic hamsters, aged 225-250 days) and normal hearts (Syrian LVG hamsters, also aged 225-250 days). Isolated hearts were perfused at constant flow and exposed to the blocker of the generation of endothelin-1 (ET-1), phosphoramidon (10 microM infusion), as well as to the selective ET(A)-receptor antagonist BQ 123 (10 microM infusion) and to a selective ET(B)-receptor antagonist BQ 788 (1 microM infusion). Coronary and cardiac effects of exogenous ET-1 (0.01-100 pmol) were also studied. Phosphoramidon, BQ 788, and BQ 123 did not altered coronary perfusion pressure either in normal or in failing hearts, whereas cardiac contractility was significantly impaired in the presence of phosphoramidon and BQ 123. Coronary sensitivity to exogenous ET-1 did not demonstrate a significant difference between normal and failing hearts [median effective concentration (EC50), 7 pmol in failing hearts vs. 12 pmol in normal hearts; p = NS]. In the presence of exogenous ET-1, cardiac contractility was significantly increased in both groups. In normal hearts, the exogenous ET-1-induced increase in coronary perfusion pressure was completely antagonized by BQ 123, whereas combined administration of BQ 788 and BQ 123 was necessary to induce complete inhibition in failing hearts. The positive inotropic effect elicited by exogenous ET-1 (EC50) was completely abolished in the presence of BQ 123, whereas BQ 788 had no significant effect. Results indicate that the endothelin pathway does not play a significant role in the altered coronary vasomotion observed in this model of chronic heart failure. On the contrary, the endothelin pathway appears to participate in the maintenance of myocardial contractility. According to these observations, administration of an inhibitor of ET-1 synthesis, as well as the use of an ET(A)-receptor antagonist, may be contraindicated in the presence of poor left ventricular function because the endothelin pathway contributes significantly to the maintenance of cardiac contractility.
3. Development of an efficient strategy for the synthesis of the ETB receptor antagonist BQ-788 and some related analogues
Pedro D'Orléans-Juste, Witold A Neugebauer, Jean-Philippe Brosseau Peptides . 2005 Aug;26(8):1441-53. doi: 10.1016/j.peptides.2005.03.022.
BQ-788 [N-cis-2,6-dimethylpiperidine-1-carbonyl-L-gamma-methylleucyl-D-1-methoxycarbonyltryptophanyl-D-norleucine sodium salt] is a very potent and selective ETB receptor antagonist. The formation of the highly hindered trisubstituted urea functionality in the peptide chain and the carbamination on the indole nitrogen of the tryptophan side chain are major challenges in the synthesis of this particular antagonist. Furthermore, the high cost of the unnatural amino acids in the sequence of BQ-788 and its reported synthesis render this pseudopeptide very expensive to produce. In order to improve the yield and to reduce the number of steps compared to previous reported syntheses, we developed an efficient strategy involving a novel one-pot procedure for the synthesis of a highly hindered trisubstituted urea. Under very mild conditions, the urea was obtained by using triphosgene and sodium iodide. This strategy allowed us to synthesize BQ-788 in seven steps with an overall yield of 53%. We also generalized the use of this powerful methodology by creating some new structural analogues of the cis-2,6-dimethylpiperidine moiety by replacing it with other bulky secondary amines. We evaluated the antagonist properties of those three new analogues of BQ-788 in two bioassays in vitro. These new antagonists were less potent than BQ-788 in an ETB rich preparation and inactive in an ETA rich preparation.
Online Inquiry
Verification code
Inquiry Basket