Need Assistance?
  • US & Canada:
    +
  • UK: +

Caerin-1.4

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Caerin-1.4 was found in Litoria gilleni. Caerin-1.4 is an antibacterial and antiviral peptide that adopts an alpha helical conformation which can disrupt bacterial membranes. Each caerin displays a different antimicrobial specificity.

Category
Functional Peptides
Catalog number
BAT-013584
Sequence
GLLSSLSSVAKHVLPHVVPVIAEHL
1. Helical structure of dermaseptin B2 in a membrane-mimetic environment
Olivier Lequin, Francine Bruston, Odile Convert, Gérard Chassaing, Pierre Nicolas Biochemistry. 2003 Sep 2;42(34):10311-23. doi: 10.1021/bi034401d.
Dermaseptins are antimicrobial peptides from frog skin that have high membrane-lytic activity against a broad spectrum of microorganisms. The structure of dermaseptin B2 in aqueous solution, in TFE/water mixtures, and in micellar and nonmicellar SDS was analyzed by CD, FTIR, fluorescence, and NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin B2 is unstructured in water, but helical conformations, mostly in segment 3-18, are stabilized by addition of TFE. SDS titration showed that dermaseptin B2 assumes nonhelical structures at SDS concentrations far below the critical micellar concentration and helical structures at micellar concentrations. Dermaseptin B2 bound to SDS micelles (0.4 mM peptide, 80 mM SDS) adopts a well-defined amphipathic helix between residues 11-31 connected to a more flexible helical segment spanning residues 1-8 by a flexible hinge region around Val9 and Gly10. Experiments using paramagnetic probes showed that dermaseptin B2 lies near the surface of SDS micelles and that residue Trp3 is buried in the SDS micelle, but close to the surface. A slow exchange equilibrium occurs at higher peptide/SDS ratios (2 mM peptide, 80 mM SDS) between forms having distinct sets of resonances in the N-terminal 1-11 segment. This equilibrium could reflect different oligomeric states of dermaseptin B2 interacting with SDS micelles. Structure-activity studies on dermaseptin B2 analogues showed that the N-terminal 1-11 segment is an absolute requirement for antibacterial activity, while the C-terminal 10-33 region is also important for full antibiotic activity.
2. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini
Olivier Lequin, Ali Ladram, Ludovic Chabbert, Francine Bruston, Odile Convert, Damien Vanhoye, Gérard Chassaing, Pierre Nicolas, Mohamed Amiche Biochemistry. 2006 Jan 17;45(2):468-80. doi: 10.1021/bi051711i.
The dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell. We have identified new members of the dermaseptin S family that do not resemble any of the naturally occurring antimicrobial peptides characterized to date. One of these peptides, designated dermaseptin S9, GLRSKIWLWVLLMIWQESNKFKKM, has a tripartite structure that includes a hydrophobic core sequence encompassing residues 6-15 (mean hydrophobicity, +4.40, determined by the Liu-Deber scale) flanked at both termini by cationic and polar residues. This structure is reminiscent of that of synthetic peptides originally designed as transmembrane mimetic models and that spontaneously become inserted into membranes [Liu, L., and Deber, C. M. (1998) Biopolymers 47, 41-62]. Dermaseptin S9 is a potent antibacterial, acting on gram-positive and gram-negative bacteria. The structure of dermaseptin S9 in aqueous solution and in TFE/water mixtures was analyzed by circular dichroism and two-dimensional NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin S9 is aggregated in water, but a monomeric nonamphipathic alpha-helical conformation, mostly in residues 6-21, is stabilized by the addition of TFE. These results, combined with membrane permeabilization assays and surface plasmon resonance analysis of the peptide binding to zwitterionic and anionic phospholipid bilayers, demonstrate that spatial segregation of hydrophobic and hydrophilic/charged residues on opposing faces along the long axis of a helix is not essential for the antimicrobial activity of cationic alpha-helical peptides.
3. Investigating the importance of the flexible hinge in caerin 1.1: solution structures and activity of two synthetically modified caerin peptides
Tara L Pukala, Craig S Brinkworth, John A Carver, John H Bowie Biochemistry. 2004 Feb 3;43(4):937-44. doi: 10.1021/bi035760b.
Caerin 1.1 is a potent broad-spectrum antibacterial peptide isolated from a number of Australian frogs of the Litoria genus. In membrane-like media, this peptide adopts two alpha-helices, separated by a flexible hinge region bounded by Pro15 and Pro19. Previous studies have suggested that the hinge region is important for effective orientation of the two helices within the bacterial cell membrane, resulting in lysis via the carpet mechanism. To evaluate the importance of the two Pro residues, they were replaced with either Ala or Gly. The antibacterial activity of these two peptides was tested, and their three-dimensional structures were determined using two-dimensional NMR spectroscopy and restrained molecular dynamics calculations. The resulting structures indicate that the central hinge angle decreases significantly upon replacement of the Pro residues with Gly and to a further extent with Ala. This trend was mirrored by a corresponding decrease in antibiotic activity, further exemplifying the necessity of the hinge in caerin 1.1 and related peptides. In a broader context, the use of Pro, Gly, and Ala variants of caerin 1.1 has enabled the relationship between conformational flexibility and activity to be directly investigated in a systematic manner.
Online Inquiry
Verification code
Inquiry Basket