Calmodulin (58-70)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Calmodulin (58-70)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Calmodulin (58-70) is a fragment of Calmodulin, a calcium-binding protein found in the cytoplasm of all eukaryotic cells. It interacts with many other proteins in the cell, and acts as a regulator or an effector molecule in a wide variety of cellular functions. These functions include things as diverse as regulation of the cell cycle, intracellular signalling, fertilization, and muscle contraction.

Category
Others
Catalog number
BAT-009496
Sequence
ADGNGTIDFPEFL
Storage
Common storage 2-8°C, long time storage -20°C.
1. Clinicopathological and molecular spectrum of ewing sarcomas/PNETs, including validation of EWSR1 rearrangement by conventional and array FISH technique in certain cases
Bharat Rekhi, Ulrich Vogel, Ranjan Basak, Sangeeta B Desai, Nirmala A Jambhekar Pathol Oncol Res. 2014 Jul;20(3):503-16. doi: 10.1007/s12253-013-9721-2. Epub 2013 Nov 30.
Over the years, a wide clinicopathological spectrum has been identified within Ewing family of tumors (EFTs). As these tumors are chemosensitive, their correct and timely identification is necessary. The aims of this study were (1) to present the diverse clinicopathological and molecular profile of EFTs in our settings, (2) to identify a pragmatic approach for diagnosing EFTs, especially for application of ancillary techniques, namely RT-PCR for specific transcripts (EWS-FLI1, EWS-ERG) and FISH for EWSR1 gene rearrangement, in certain cases and (3) to show the utility of tissue microarray in establishing a new FISH test. Fifty-eight EFTs were identified in 38 males and 20 females within an age-range of 1-65 years (median, 16), mostly in lower extremities (14) (24.1 %). Therapeutically, most patients underwent neoadjuvant chemotherapy with subsequent surgery. Histopathologically, diagnosis of EFTs was initially offered in 41/58 (70.6 %) tumors. On review, 59 % tumors showed diffuse pattern, while 41 % displayed rosettes. Immunohistochemically, tumor cells were mostly diffusely positive for CD99 (48/52) (92.3 %); FLI-1 (17/18) (94.4 %); variably for BCL2 (16/18) (88.8 %), synaptophysin (6/20) (35 %), S100-P (2/7) (28.5 %), CD56 (2/5) (40 %), NSE (2/5) (40 %), calponin (3/4) (75 %), EMA (5/24) (20.8 %) and CK (3/24) (12.5 %), the latter two mostly focally. Fifty five tumors were EWS-FLI1 positive, while a single tumor was EWS-ERG positive. Sensitivity for PCR was 61 %. EWSR1 rearrangement was detected by FISH in 12/13 Ewing sarcomas/PNETs. Sensitivity for EWSR1 test was 92.3 % and specificity was 100 %. Thirty-eight tumors, including 14 molecular confirmed EFTs and 21 other tumors were tested for EWSR1 rearrangement. Among 21 unrelated tumors, EWSR1 rearrangement was detected in few myoepithelial tumors, occasional desmoplastic small round cell tumor and an extraskeletal myxoid chondrosarcoma. Further, a tissue microarray with a separate set of 8 EFTs, confirmed at another laboratory was analysed for validation of EWSR1 rearrangement test. 23/28 (82.1 %) tissue cores of the tissue microarray, stained by FISH were interpretable, including EWSR1 rearrangement, detected in 20/28 tissue cores; not detected in 3 liver cores and uninterpretable in 5 (17.8 %) cores. Classical EFTs can be diagnosed with diffuse, membranous CD99 positivity, intranuclear FLI1 positivity and LCA negativity in malignant round cells. In unconventional cases, it is indispensable to reveal the concomitant fusion m-RNA by RT-PCR. In case of negative molecular results, it is necessary to prove EWSR1 rearrangement by FISH. These tests should be interpreted with clinicopathological correlation. Tissue microarrays for FISH are useful during validation of a new test, especially when sarcomas like EFTs show less genetic heterogeneity within tumor cells.
2. The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases
Ezekiel Gonzalez-Fernandez, Letao Fan, Shaoxun Wang, Yedan Liu, Wenjun Gao, Kirby N Thomas, Fan Fan, Richard J Roman Physiol Genomics. 2022 Feb 1;54(2):58-70. doi: 10.1152/physiolgenomics.00119.2021. Epub 2021 Dec 3.
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Online Inquiry
Verification code
Inquiry Basket