CCK-4 Acetate
Need Assistance?
  • US & Canada:
    +
  • UK: +

CCK-4 Acetate

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Tetragastrin is a tetrapeptide.

Category
Others
Catalog number
BAT-010027
CAS number
35144-91-3
Molecular Formula
C29H36N6O6S
Molecular Weight
596.70
CCK-4 Acetate
IUPAC Name
(3S)-3-[[(2S)-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid
Synonyms
CCK-4; CCK4; CCK 4; Gastrin Tetrapeptide; Cholecystokinin Octapeptide (5-8); Cholecystokinin Tetrapeptide; Gastrin (14-17) (human)
Density
1.4±0.1 g/cm3
Boiling Point
1070.0±65.0°C at 760 mmHg
Sequence
Trp-Met-Asp-Phe-NH2
Storage
Store at -20°C
InChI
InChI=1S/C29H36N6O6S/c1-42-12-11-22(33-27(39)20(30)14-18-16-32-21-10-6-5-9-19(18)21)28(40)35-24(15-25(36)37)29(41)34-23(26(31)38)13-17-7-3-2-4-8-17/h2-10,16,20,22-24,32H,11-15,30H2,1H3,(H2,31,38)(H,33,39)(H,34,41)(H,35,40)(H,36,37)/t20-,22-,23-,24-/m0/s1
InChI Key
RGYLYUZOGHTBRF-BIHRQFPBSA-N
Canonical SMILES
CSCCC(C(=O)NC(CC(=O)O)C(=O)NC(CC1=CC=CC=C1)C(=O)N)NC(=O)C(CC2=CNC3=CC=CC=C32)N
1. 1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion
S J Pandol, M S Schoeffield J Biol Chem. 1986 Apr 5;261(10):4438-44.
To determine the role of 1,2-diacylglycerol (1,2-DAG) and protein kinase C in pancreatic enzyme secretion, we measured the effect of various pancreatic secretagogues on the cellular mass of 1,2-DAG and amylase release in dispersed pancreatic acini from the guinea pig. In addition, we measured the effect of a recently described protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036-5041), on secretagogue-stimulated amylase release from the acini. Cholecystokinin-octapeptide (CCK-OP), cholecystokinintetrapeptide, and carbachol each increased 1,2-DAG 2-3-fold but the increases occurred only with concentrations of these secretagogues that were supramaximal for amylase release and that had an inhibitory effect on stimulated amylase release. Supramaximal concentrations of bombesin stimulated only a small increase in 1,2-DAG and did not cause inhibition of stimulated amylase release. When the action of carbachol was terminated with atropine or CCK-OP with dibutyryl cyclic GMP, stimulated amylase release ceased immediately but cellular 1,2-DAG required at least 15 min to return to the basal level. Increasing cytosolic free Ca2+ with the Ca2+ ionophore, A23187, in Ca2+-containing incubation media augmented amylase release stimulated by 4 beta-phorbol 12-myristate 13-acetate but inhibited amylase release stimulated by CCK-OP, carbachol, and bombesin without decreasing the cellular content of 1,2-DAG. H-7 inhibited protein kinase C activity in a pancreatic homogenate but augmented amylase release from acini stimulated by either CCK-OP, carbachol, or 4 beta-phorbol 12-myristate 13-acetate. These findings indicate that 1,2-DAG and protein kinase C do not have a stimulatory role in pancreatic stimulus-secretion coupling but may have an inhibitory one.
2. Additional observations on cholecystokinin and the vasoactive intestinal polypeptide
V Mutt Peptides. 1981;2 Suppl 2:209-14. doi: 10.1016/0196-9781(81)90033-4.
During the isolation of cholecystokinin from natural sources, as well as during its bioassay, inactivation by oxidation can cause problems. We have attempted to reactivate oxidized CCK by reduction at room temperature with N-methylmercaptoacetamide, recently stated to be the reducing agent of choice for the reduction of methionine sulfoxide to methionine [22]. We have not yet been unequivocally successful in these attempts, but the results seem promising. In the case of oxidized VIP and of oxidized tetragastrin, reduction with N-methylmercaptoacetamide does seem to result in reconversion of the peptides to their preoxidation states, as evidenced by thin layer chromatography on silica gel. We have, together with A. Holmgren and A. Ehrnberg, made observations suggesting the presence in rate liver cytosol of an enzyme which catalyzes the reductive reactivation of oxidized CCK with reduced thioredoxin as the immediate hydrogen donor. In collaboration with A. Light, Purdue University, we have found that enterokinase cleaves 39-CCK and 33-CCk with release of 8-CCK and the tetrapeptide immediately preceding it in the peptide chain. The conversion of 39-CCK to 33-CCK by the action of dipeptidyl amino-peptidase I has been confirmed.
3. The excitatory effect of cholecystokinin on rat neostriatal neurons: ionic and molecular mechanisms
T Wu, H L Wang Eur J Pharmacol. 1996 Jun 27;307(2):125-32. doi: 10.1016/0014-2999(96)00213-0.
Whole-cell patch-clamp recordings were performed to study ionic and molecular mechanisms by which cholecystokinin (CCK) peptides modulate the membrane excitability of acutely dissociated rat neostriatal neurons. Immunohistochemical staining studies indicated that about 95% of acutely isolated neostriatal neurons were GABA(gamma-aminobutyric acid)ergic medium-sized cells. During current-clamp recordings, sulfated cholecystokinin octapeptide (CCK-8) depolarized neostriatal neurons and evoked action potentials. During voltage-clamp recordings, CCK-8 induced inward currents at negative membrane potentials by increasing the voltage-insensitive and non-selective cationic conductance. Cholecystokinin tetrapeptide (CCK-4), a selective CCKB receptor agonist, also evoked cationic currents. The CCK-8-induced cation currents were antagonized by PD135,158 (4-{[2-[[3-(1H-indol-3yl)-2-mehtyl-1-oxo-2-[[[1.7.7.-trimeth yl-bicyclo [2.2.1]hept-2-yl)oxy]carbonyl]amino]propyl]amino]-1-phenylethyl]amino-4- oxo- [1S-1 alpha, 2 beta [S*(S*)]4 alpha]}-butanoate N-methyl-D-glucamine), a highly specific and potent CCKB receptor antagonist. The CCK-8-evoked inward currents were blocked by the internal perfusion of 1 mM GDP-beta-S. In neostriatal neurons dialyzed with 0.5 mM GTP-gamma-S, the cationic currents produced by CCK-8 became irreversible. Pretreating neostriatal neurons with 500 ng/ml pertussis toxin did not prevent CCK-8 from evoking cationic currents. Internal administration of heparin (2 mg/ml), an inositol 1,4,5-trisphosphate (IP3) receptor antagonist, and buffering of intracellular calcium with the Ca(2+)-chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 10 mM), suppressed CCK-8-evoked cationic currents. These findings suggest that, by activating CCKB receptors, CCK-8 excites rat neostriatal neurons through enhancing a non-selective cationic conductance and that pertussis toxin-insensitive G-proteins mediate CCK-8 enhancement of the cationic conductance. The coupling mechanism via G-proteins is likely to involve the production of IP3, and the subsequent IP3-evoked Ca2+ release leads to the opening of non-selective cation channels.
Online Inquiry
Verification code
Inquiry Basket