Need Assistance?
  • US & Canada:
    +
  • UK: +

Cecropin A

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Cecropin A is an antibacterial peptide that exists in a variety of organisms including mammals. It has a broad-spectrum antiparasitic and antibacterial activity.

Category
Functional Peptides
Catalog number
BAT-010626
CAS number
80451-04-3
Molecular Formula
C184H313N53O46
Molecular Weight
4003.78
Cecropin A
IUPAC Name
(4S)-5-[[(2S)-6-amino-1-[[(2S)-1-[[2-[[(2S)-5-amino-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S,3S)-1-[[(2S,3S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-5-amino-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-5-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1,6-diamino-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-[[(2S,3S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-3-phenylpropanoyl]amino]hexanoyl]amino]hexanoyl]amino]-3-methylpentanoyl]amino]-5-oxopentanoic acid
Synonyms
Lys-Trp-Lys-Leu-Phe-Lys-Lys-Ile-Glu-Lys-Val-Gly-Gln-Asn-Ile-Arg-Asp-Gly-Ile-Ile-Lys-Ala-Gly-Pro-Ala-Val-Ala-Val-Val-Gly-Gln-Ala-Thr-Gln-Ile-Ala-Lys-NH2; Cecropin A, porcine; P9A Protein; L-lysyl-L-tryptophyl-L-lysyl-L-leucyl-L-phenylalanyl-L-lysyl-L-lysyl-L-isoleucyl-L-alpha-glutamyl-L-lysyl-L-valyl-glycyl-L-glutaminyl-L-asparagyl-L-isoleucyl-L-arginyl-L-alpha-aspartyl-glycyl-L-isoleucyl-L-isoleucyl-L-lysyl-L-alanyl-glycyl-L-prolyl-L-alanyl-L-valyl-L-alanyl-L-valyl-L-valyl-glycyl-L-glutaminyl-L-alanyl-L-threonyl-L-glutaminyl-L-isoleucyl-L-alanyl-L-lysinamide
Appearance
White Lyophilized Powder
Purity
≥95% by HPLC
Sequence
KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C184H313N53O46/c1-27-98(16)145(182(282)235-149(102(20)31-5)181(281)218-115(59-39-46-76-187)159(259)206-103(21)152(252)205-92-138(246)237-82-52-65-130(237)173(273)208-106(24)154(254)228-143(96(12)13)176(276)209-107(25)155(255)229-144(97(14)15)177(277)231-142(95(10)11)175(275)204-89-135(243)211-121(66-70-131(193)239)160(260)207-105(23)156(256)236-150(108(26)238)183(283)221-123(68-72-133(195)241)168(268)232-146(99(17)28-2)178(278)210-104(22)153(253)213-114(151(197)251)58-38-45-75-186)227-137(245)91-202-158(258)129(87-140(249)250)226-163(263)120(64-51-81-200-184(198)199)219-179(279)148(101(19)30-4)234-172(272)128(86-134(196)242)225-164(264)122(67-71-132(194)240)212-136(244)90-203-174(274)141(94(8)9)230-166(266)118(62-42-49-79-190)215-165(265)124(69-73-139(247)248)220-180(280)147(100(18)29-3)233-167(267)119(63-43-50-80-191)214-161(261)116(60-40-47-77-188)216-170(270)126(84-109-53-33-32-34-54-109)224-169(269)125(83-93(6)7)223-162(262)117(61-41-48-78-189)217-171(271)127(222-157(257)112(192)56-37-44-74-185)85-110-88-201-113-57-36-35-55-111(110)113/h32-36,53-55,57,88,93-108,112,114-130,141-150,201,238H,27-31,37-52,56,58-87,89-92,185-192H2,1-26H3,(H2,193,239)(H2,194,240)(H2,195,241)(H2,196,242)(H2,197,251)(H,202,258)(H,203,274)(H,204,275)(H,205,252)(H,206,259)(H,207,260)(H,208,273)(H,209,276)(H,210,278)(H,211,243)(H,212,244)(H,213,253)(H,214,261)(H,215,265)(H,216,270)(H,217,271)(H,218,281)(H,219,279)(H,220,280)(H,221,283)(H,222,257)(H,223,262)(H,224,269)(H,225,264)(H,226,263)(H,227,245)(H,228,254)(H,229,255)(H,230,266)(H,231,277)(H,232,268)(H,233,267)(H,234,272)(H,235,282)(H,236,256)(H,247,248)(H,249,250)(H4,198,199,200)/t98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108+,112-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-/m0/s1
InChI Key
HCQPHKMLKXOJSR-IRCPFGJUSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C(C)CC)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NCC(=O)N1CCCC1C(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NCC(=O)NC(CCC(=O)N)C(=O)NC(C)C(=O)NC(C(C)O)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)CC)C(=O)NC(C)C(=O)NC(CCCCN)C(=O)N)NC(=O)CNC(=O)C(CC(=O)O)NC(=O)C(CCCNC(=N)N)NC(=O)C(C(C)CC)NC(=O)C(CC(=O)N)NC(=O)C(CCC(=O)N)NC(=O)CNC(=O)C(C(C)C)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(C(C)CC)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC(C)C)NC(=O)C(CCCCN)NC(=O)C(CC3=CNC4=CC=CC=C43)NC(=O)C(CCCCN)N
1.Primed Immune Responses Triggered by Ingested Bacteria Lead to Systemic Infection Tolerance in Silkworms.
Miyashita A1, Takahashi S1, Ishii K1, Sekimizu K1, Kaito C1. PLoS One. 2015 Jun 24;10(6):e0130486. doi: 10.1371/journal.pone.0130486. eCollection 2015.
In the present study, we examined whether microorganisms collaterally ingested by insects with their food activate the innate immune system to confer systemic resistance against subsequent bacterial invasion. Silkworms orally administered heat-killed Pseudomonas aeruginosa cells showed resistance against intra-hemolymph infection by P. aeruginosa. Oral administration of peptidoglycans, cell wall components of P. aeruginosa, conferred protective effects against P. aeruginosa infection, whereas oral administration of lipopolysaccharides, bacterial surface components, did not. In silkworms orally administered heat-killed P. aeruginosa cells, P. aeruginosa growth was inhibited in the hemolymph, and mRNA amounts of the antimicrobial peptides cecropin A and moricin were increased in the hemocytes and fat body. Furthermore, the amount of paralytic peptide, an insect cytokine that activates innate immune reactions, was increased in the hemolymph of silkworms orally administered heat-killed P.
2.Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa.
Yang H1, Wang M1, Yu J1, Wei H1. Front Microbiol. 2015 Dec 22;6:1471. doi: 10.3389/fmicb.2015.01471. eCollection 2015.
The global emergence of multidrug-resistant (MDR) bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA) was constructed by fusing the cecropin A peptide residues 1-8 (KWKLFKKI) with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid) could enhance the antibacterial activity of PlyA against stationary phase cells.
3.Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton.
Zhang Z1, Zhao J1, Ding L1, Zou L2, Li Y2, Chen G2, Zhang T1. Sci Rep. 2016 Feb 9;6:20773. doi: 10.1038/srep20773.
Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro.
4.A novel inclusion complex (β-CD/ABP-dHC-cecropin A) with antibiotic propertiess for use as an anti-Agrobacterium additive in transgenic poplar rooting medium.
Zhang J1, Li J2, Movahedi A1, Sang M1, Xu C1, Xu J1, Wei Z1, Yin T1, Zhuge Q3. Enzyme Microb Technol. 2015 Dec;81:72-9. doi: 10.1016/j.enzmictec.2015.08.007. Epub 2015 Aug 14.
The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous effort to develop novel antibiotics with new modes of action.We recently reported that ABP-dHC-cecropin A exhibited strong antibacterial and antifungal activity, making it a candidate antibiotic substitute. In this study, β-cyclodextrin (β-CD) combined with ABP-dHC-cecropin A enhanced the physical and chemical properties of ABP-dHC-cecropin A but did not significantly decrease its antibacterial activity. Thus, β-CD/ABP-dHC-cecropin A should be considered a novel antibacterial drug. We used β-CD/ABP-dHC-cecropin A as an anti-Agrobacterium compound to supplementtransgenic poplar medium. Sideeffects of the inclusion complex had little impact on plantgrowth. Thus, β-CD/ABP-dHC-cecropin A may be used as traditional antibiotics forpoplar transplantation with greater antibbacterial effects.
Online Inquiry
Verification code
Inquiry Basket