Need Assistance?
  • US & Canada:
    +
  • UK: +

Cecropin P1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is the first cecropin family to be isolated from a mammal rather than an insect. It has antiviral and broad-spectrum antibacterial activities. It also has antifungal activity, and has cytotoxic effect on cancer cell lines.

Category
Functional Peptides
Catalog number
BAT-013833
CAS number
125667-96-1
Molecular Formula
C147H253N45O43
Molecular Weight
3338.86
Cecropin P1
IUPAC Name
(4S)-5-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S,3S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-5-amino-1-[[2-[[2-[(2S)-2-[[(1S)-4-carbamimidamido-1-carboxybutyl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-2-oxoethyl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-3-hydroxybutanoyl]amino]propanoyl]amino]hexanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoic acid
Synonyms
H-Ser-Trp-Leu-Ser-Lys-Thr-Ala-Lys-Lys-Leu-Glu-Asn-Ser-Ala-Lys-Lys-Arg-Ile-Ser-Glu-Gly-Ile-Ala-Ile-Ala-Ile-Gln-Gly-Gly-Pro-Arg-OH; Cecropin P1-LI; Cecropin P1 Porcine
Appearance
Powder
Purity
≥95%
Density
1.46±0.1 g/cm3 (Predicted)
Sequence
SWLSKTAKKLENSAKKRISEGIAIAIQGGPR
Storage
Store at -20°C
InChI
InChI=1S/C147H253N45O43/c1-18-75(9)113(140(229)167-81(15)120(209)188-114(76(10)19-2)141(230)168-82(16)121(210)189-115(77(11)20-3)142(231)178-94(47-50-106(154)198)123(212)164-66-108(200)163-68-110(202)192-60-36-46-105(192)139(228)179-97(145(234)235)45-35-59-161-147(158)159)187-109(201)67-165-124(213)95(48-51-111(203)204)176-138(227)104(72-196)186-143(232)116(78(12)21-4)190-130(219)93(44-34-58-160-146(156)157)174-127(216)90(41-26-31-55-150)172-125(214)88(39-24-29-53-148)170-118(207)79(13)166-136(225)102(70-194)184-135(224)101(64-107(155)199)183-129(218)96(49-52-112(205)206)177-132(221)98(61-73(5)6)181-128(217)91(42-27-32-56-151)173-126(215)89(40-25-30-54-149)171-119(208)80(14)169-144(233)117(83(17)197)191-131(220)92(43-28-33-57-152)175-137(226)103(71-195)185-133(222)99(62-74(7)8)182-134(223)100(180-122(211)86(153)69-193)63-84-65-162-87-38-23-22-37-85(84)87/h22-23,37-38,65,73-83,86,88-105,113-117,162,193-197H,18-21,24-36,39-64,66-72,148-153H2,1-17H3,(H2,154,198)(H2,155,199)(H,163,200)(H,164,212)(H,165,213)(H,166,225)(H,167,229)(H,168,230)(H,169,233)(H,170,207)(H,171,208)(H,172,214)(H,173,215)(H,174,216)(H,175,226)(H,176,227)(H,177,221)(H,178,231)(H,179,228)(H,180,211)(H,181,217)(H,182,223)(H,183,218)(H,184,224)(H,185,222)(H,186,232)(H,187,201)(H,188,209)(H,189,210)(H,190,219)(H,191,220)(H,203,204)(H,205,206)(H,234,235)(H4,156,157,160)(H4,158,159,161)/t75-,76-,77-,78-,79-,80-,81-,82-,83+,86-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,113-,114-,115-,116-,117-/m0/s1
InChI Key
PRIVBYDFWSFUFP-RJLJEYQFSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C)C(=O)NC(C(C)CC)C(=O)NC(C)C(=O)NC(C(C)CC)C(=O)NC(CCC(=O)N)C(=O)NCC(=O)NCC(=O)N1CCCC1C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)CNC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)CC)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(CO)NC(=O)C(CC(=O)N)NC(=O)C(CCC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(C(C)O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CC2=CNC3=CC=CC=C32)NC(=O)C(CO)N
1. Three-Dimensional Structure of the Antimicrobial Peptide Cecropin P1 in Dodecylphosphocholine Micelles and the Role of the C-Terminal Residues
Yasuhiro Kumaki, Hao Gu, Hiroaki Ishida, Takashi Tsukamoto, Takashi Kikukawa, Tomoyasu Aizawa, Takasumi Kato, Makoto Demura, Hiroyuki Kumeta, Hans J Vogel ACS Omega . 2022 Sep 2;7(36):31924-31934. doi: 10.1021/acsomega.2c02778.
Cecropin P1 (CP1) isolated from a large roundwormAscaris suum, which is found in pig intestines, has been extensively studied as a model antimicrobial peptide (AMP). However, despite being a model AMP, its antibacterial mechanism is not well understood, particularly the function of its C-terminus. By using anEscherichia colioverexpression system with calmodulin as a fusion partner, we succeeded in the mass expression of recombinant peptides, avoiding toxicity to the host and degradation of CP1. The structure of the recombinant15N- and13C-labeled CP1 and its C-terminus truncated analogue in dodecylphosphocholine (DPC) micelles was determined by NMR. In this membrane-mimetic environment, CP1 formed an α-helix for almost its entire length, except for a short region at the C-terminus, and there was no evidence of a hinge, which is considered important for the expression of activity in other cecropins. Several NMR analyses showed that the entire length of CP1 was protected from water by micelles. Since the loss of the C-terminus of the analogue had little effect on the NMR structure or its interaction with the micelle, we investigated another role of the C-terminus of CP1 in its antimicrobial activity. The results showed that the C-terminal region affected the DNA-binding capacity of CP1, and this mechanism of action was also newly suggested that it contributed to the antimicrobial activity of CP1.
2. Activity of cecropin P1 and FA-LL-37 against urogenital microflora
G Reid, K Scott, V Smeianov Microbes Infect . 2000 Jun;2(7):773-7. doi: 10.1016/s1286-4579(00)90359-9.
Two mammalian antimicrobial peptides, FA-LL-37 and cecropin P1, were tested for activity against six uropathogens and five Lactobacillus strains by broth microdilution assay. Both peptides inhibited Escherichia coli at 25 microM (FA-LL-39), and 1.56 microM (cecropin P1), Pseudomonas aeruginosa (12.5 microM, and 25 microM), and Klebsiella pneumoniae, (50 microM, and 1.56 microM), but not Enterococcus faecalis and Staphylococcus epidermidis. FA-LL-37 acted bacteriocidally against E. coli and bacteriostatically against the other two Gram-negative organisms. Cecropin P1 was bacteriocidal to all susceptible bacteria. Lactobacilli were resistant to both peptides, with the exception of poultry isolate Lactobacillus fermentum B-54, which was susceptible to FA-LL-37 at 100 microM. The differential activities of these peptides toward Gram-negative uropathogens versus urogenital lactobacilli demonstrate their potential as a topical treatment for urinary tract infections. In addition, production of such peptides in vivo could be a natural mechanism to aid in the maintenance of the lactobacilli-dominated urogenital flora at the expense of pathogens.
3. Cecropin P1 inhibits porcine reproductive and respiratory syndrome virus by blocking attachment
Peiqing Cong, Xiaohong Liu, Yaosheng Chen, Chunhe Guo, Zuyong He, Yumao Huang BMC Microbiol . 2014 Nov 18;14:273. doi: 10.1186/s12866-014-0273-8.
Background:Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pig industry, causing high economic losses worldwide. Current vaccines have specific limitations in terms of their safety and efficacy, so the development of novel antiviral drugs is urgently required. The aim of this study was to evaluate the inhibitory effects and underlying molecular mechanisms of the antimicrobial peptide cecropin P1 (CP1) against PRRSV infection in vitro.Results:CP1 not only displayed extracellular virucidal activity against PRRSV, but also exerted a potent inhibitory effect when added either before, simultaneously with, or after viral inoculation. The inhibitory effect of CP1 occurred during viral attachment, but not at viral entry into Marc-145 cells. CP1 also inhibited viral particle release and attenuated virus-induced apoptosis during the late phase of infection. CP1 exerted similar inhibitory effects against PRRSV infection in porcine alveolar macrophages, the cells targeted by the virus in vivo during its infection of pigs. The expression of interleukin 6 was elevated by CP1 in porcine alveolar macrophages, which might contribute to its inhibition of PRRSV infection.Conclusions:Collectively, our findings provide a new direction for the development of potential therapeutic drugs against PRRSV infection.
Online Inquiry
Verification code
Inquiry Basket