CGRP 8-37 (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

CGRP 8-37 (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

CGRP 8-37 (human) is a peptide antagonist for CGRP1 receptors.

Category
Peptide Inhibitors
Catalog number
BAT-010179
CAS number
119911-68-1
Molecular Formula
C139H230N44O38
Molecular Weight
3125.6
CGRP 8-37 (human)
IUPAC Name
(2S)-N-[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1,4-dioxobutan-2-yl]-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]butanediamide
Synonyms
FBHuman; HCGRP-(8-37); HY-P1014; HY P1014; HYP1014; CGRP 8 37
Appearance
Powder
Purity
>95%
Density
1.46±0.1 g/cm3(Predicted)
Sequence
VTHRLAGLLSRSGGVVKNNFVPTNVGSKAF
Storage
Store at -20°C
Application
Miotics
InChI
InChI=1S/C139H230N44O38/c1-66(2)48-86(161-102(193)60-155-113(197)74(17)159-120(204)87(49-67(3)4)168-118(202)83(40-31-45-152-138(147)148)163-123(207)90(53-80-57-151-65-158-80)173-136(220)111(77(20)188)182-131(215)105(145)69(7)8)121(205)169-88(50-68(5)6)122(206)176-96(64-186)129(213)165-84(41-32-46-153-139(149)150)119(203)175-94(62-184)115(199)156-58-101(192)154-59-104(195)177-107(71(11)12)134(218)179-108(72(13)14)133(217)166-82(39-28-30-44-141)117(201)171-91(54-98(142)189)125(209)172-92(55-99(143)190)124(208)170-89(52-79-36-25-22-26-37-79)126(210)180-109(73(15)16)137(221)183-47-33-42-97(183)130(214)181-110(76(19)187)135(219)174-93(56-100(144)191)127(211)178-106(70(9)10)132(216)157-61-103(194)162-95(63-185)128(212)164-81(38-27-29-43-140)116(200)160-75(18)114(198)167-85(112(146)196)51-78-34-23-21-24-35-78/h21-26,34-37,57,65-77,81-97,105-111,184-188H,27-33,38-56,58-64,140-141,145H2,1-20H3,(H2,142,189)(H2,143,190)(H2,144,191)(H2,146,196)(H,151,158)(H,154,192)(H,155,197)(H,156,199)(H,157,216)(H,159,204)(H,160,200)(H,161,193)(H,162,194)(H,163,207)(H,164,212)(H,165,213)(H,166,217)(H,167,198)(H,168,202)(H,169,205)(H,170,208)(H,171,201)(H,172,209)(H,173,220)(H,174,219)(H,175,203)(H,176,206)(H,177,195)(H,178,211)(H,179,218)(H,180,210)(H,181,214)(H,182,215)(H4,147,148,152)(H4,149,150,153)/t74-,75-,76+,77+,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,105-,106-,107-,108-,109-,110-,111-/m0/s1
InChI Key
NDACAFBDTQIYCQ-YVQXRMNASA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(CO)C(=O)NCC(=O)NCC(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(CC(=O)N)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(C(C)C)C(=O)N2CCCC2C(=O)NC(C(C)O)C(=O)NC(CC(=O)N)C(=O)NC(C(C)C)C(=O)NCC(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CC3=CC=CC=C3)C(=O)N)NC(=O)CNC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC4=CNC=N4)NC(=O)C(C(C)O)NC(=O)C(C(C)C)N
1. BIBN4096BS and CGRP(8-37) antagonize the relaxant effects of alpha-CGRP more than those of beta-CGRP in human extracranial arteries
Raphaela Verheggen, Kordian Wojtas, Martin Webel, Steffi Hoffmann, Alberto J Kaumann Naunyn Schmiedebergs Arch Pharmacol. 2005 May;371(5):383-92. doi: 10.1007/s00210-005-1064-4. Epub 2005 Jun 28.
We hypothesize that dilatation of extracranial arteries during migraine could be caused by CGRP. We compared the relaxant effects of alpha-calcitonin gene-related peptide (alpha-CGRP) and beta-calcitonin gene-related peptide (beta-CGRP) and the antagonism by BIBN4096BS and CGRP(8-37) on rings of human temporal and occipital arteries precontracted with KCl. beta-CGRP relaxed temporal (-logEC50M = 8.1) and occipital arteries (-logEC50M = 7.6) with 19-fold and 29-fold lower potencies respectively than alpha-CGRP. Nearly maximal effective concentrations of alpha-CGRP (4 nM) and beta-CGRP (50 nM) caused stable relaxations of the temporal artery for 4 h without fading. BIBN4094BS antagonized the effects of alpha-CGRP (pK(B) = 10.1 and 9.9, respectively) more than beta-CGRP (pK(B) = 9.3 and 9.2 respectively) on both temporal and occipital arteries. CGRP(8-37) antagonized the effects of alpha-CGRP (pK(B) = 6.6 and 6.4 respectively) more than beta-CGRP (pK(B) = 5.7 and 5.5 respectively) on both temporal and occipital arteries. Antagonism of the relaxant effects of alpha-CGRP (4 nM) and beta-CGRP (50 nM) by BIBN4096BS (10 and 100 nM) was reversible for beta-CGRP, but irreversible for alpha-CGRP, 1 h after BIBN4096BS washout. We conclude that alpha-CGRP and beta-CGRP interact either at different binding sites of the same CGRP receptor system or all together with different receptor systems in human extracranial arteries. BIBN4096BS binds more firmly to the receptor activated by alpha-CGRP than to the receptor activated by beta-CGRP.
2. Calcitonin gene-related peptide receptor antagonist human CGRP-(8-37)
T Chiba, A Yamaguchi, T Yamatani, A Nakamura, T Morishita, T Inui, M Fukase, T Noda, T Fujita Am J Physiol. 1989 Feb;256(2 Pt 1):E331-5. doi: 10.1152/ajpendo.1989.256.2.E331.
From this study, we predicted that the human calcitonin gene-related peptide (hCGRP) fragment hCGRP-(8-37) would be a selective antagonist for CGRP receptors but an agonist for calcitonin (CT) receptors. In rat liver plasma membrane, where CGRP receptors predominate and CT appears to act through these receptors, hCGRP-(8-37) dose dependently displaced 125I-[Tyr0]rat CGRP binding. However, hCGRP-(8-37) had no effect on adenylate cyclase activity in liver plasma membrane. Furthermore, hCGRP-(8-37) inhibited adenylate cyclase activation induced not only by hCGRP but also by hCT. On the other hand, in LLC-PK1 cells, where calcitonin receptors are abundant and CGRP appears to act via these receptors, the bindings of 125I-[Tyr0]rat CGRP and 125I-hCT were both inhibited by hCGRP-(8-37). In contrast to liver membranes, interaction of hCGRP-(8-37) with these receptors led to stimulation of adenosine 3',5'-cyclic monophosphate (cAMP) production in LLC-PK1 cells, and moreover, this fragment did not inhibit the increased production of cAMP induced not only by hCT but also by hCGRP. Thus hCGRP-(8-37) appears to be a useful tool for determining whether the action of CGRP as well as that of CT is mediated via specific CGRP receptors or CT receptors.
3. A Female-Specific Role for Calcitonin Gene-Related Peptide (CGRP) in Rodent Pain Models
Candler Paige, et al. J Neurosci. 2022 Mar 9;42(10):1930-1944. doi: 10.1523/JNEUROSCI.1137-21.2022. Epub 2022 Jan 20.
We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.
Online Inquiry
Verification code
Inquiry Basket