α-CGRP (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

α-CGRP (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

α-CGRP (human) is an endogenous calcitonin gene-related peptide receptor (CGRP) agonist.

Category
Peptide Inhibitors
Catalog number
BAT-010834
CAS number
90954-53-3
Molecular Formula
C163H267N51O49S2
Molecular Weight
3789.33
α-CGRP (human)
IUPAC Name
2-[(4R,7S,10S,13S,16S,19R)-4-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-2-oxoethyl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamoyl]-19-[[(2S)-2-aminopropanoyl]amino]-7,13-bis[(1R)-1-hydroxyethyl]-10-methyl-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicos-16-yl]acetic acid
Synonyms
Calcitonin Gene Related Peptide; CGRP, human
Appearance
Powder
Sequence
AC(1)DTATC(1)VTHRLAGLLSRSGGVVKNNFVPTNVGSKAF
Storage
Store at -20°C
InChI
InChI=1S/C163H269N51O49S2/c1-73(2)52-97(186-116(226)65-179-131(233)82(18)183-139(241)98(53-74(3)4)193-137(239)94(44-35-49-176-162(171)172)188-142(244)101(57-91-62-175-72-182-91)199-159(261)128(88(24)221)213-156(258)123(79(13)14)207-151(253)110(71-265)204-160(262)126(86(22)219)210-133(235)84(20)185-157(259)125(85(21)218)211-147(249)105(61-119(229)230)198-150(252)109(70-264)203-130(232)81(17)166)140(242)194-99(54-75(5)6)141(243)202-108(69-217)149(251)190-95(45-36-50-177-163(173)174)138(240)201-106(67-215)134(236)180-63-115(225)178-64-118(228)205-121(77(9)10)155(257)208-122(78(11)12)154(256)191-93(43-32-34-48-165)136(238)196-102(58-112(167)222)144(246)197-103(59-113(168)223)143(245)195-100(56-90-40-29-26-30-41-90)145(247)209-124(80(15)16)161(263)214-51-37-46-111(214)152(254)212-127(87(23)220)158(260)200-104(60-114(169)224)146(248)206-120(76(7)8)153(255)181-66-117(227)187-107(68-216)148(250)189-92(42-31-33-47-164)135(237)184-83(19)132(234)192-96(129(170)231)55-89-38-27-25-28-39-89/h25-30,38-41,62,72-88,92-111,120-128,215-221,264-265H,31-37,42-61,63-71,164-166H2,1-24H3,(H2,167,222)(H2,168,223)(H2,169,224)(H2,170,231)(H,175,182)(H,178,225)(H,179,233)(H,180,236)(H,181,255)(H,183,241)(H,184,237)(H,185,259)(H,186,226)(H,187,227)(H,188,244)(H,189,250)(H,190,251)(H,191,256)(H,192,234)(H,193,239)(H,194,242)(H,195,245)(H,196,238)(H,197,246)(H,198,252)(H,199,261)(H,200,260)(H,201,240)(H,202,243)(H,203,232)(H,204,262)(H,205,228)(H,206,248)(H,207,253)(H,208,257)(H,209,247)(H,210,235)(H,211,249)(H,212,254)(H,213,258)(H,229,230)(H4,171,172,176)(H4,173,174,177)/t81-,82-,83-,84-,85+,86+,87+,88+,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,120-,121-,122-,123-,124-,125-,126-,127-,128-/m0/s1
InChI Key
DNKYDHSONDSTNJ-XJVRLEFXSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(CO)C(=O)NCC(=O)NCC(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(CC(=O)N)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(C(C)C)C(=O)N2CCCC2C(=O)NC(C(C)O)C(=O)NC(CC(=O)N)C(=O)NC(C(C)C)C(=O)NCC(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CC3=CC=CC=C3)C(=O)N)NC(=O)CNC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC4=CN=CN4)NC(=O)C(C(C)O)NC(=O)C(C(C)C)NC(=O)C(CS)NC(=O)C(C(C)O)NC(=O)C(C)NC(=O)C(C(C)O)NC(=O)C(CC(=O)O)NC(=O)C(CS)NC(=O)C(C)N
1. Calcitonin gene-related peptide: physiology and pathophysiology
F A Russell, R King, S-J Smillie, X Kodji, S D Brain Physiol Rev. 2014 Oct;94(4):1099-142. doi: 10.1152/physrev.00034.2013.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
2. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats
Yifeng Zhang, et al. Nat Med. 2016 Oct;22(10):1160-1169. doi: 10.1038/nm.4162. Epub 2016 Aug 29.
Orthopedic implants containing biodegradable magnesium have been used for fracture repair with considerable efficacy; however, the underlying mechanisms by which these implants improve fracture healing remain elusive. Here we show the formation of abundant new bone at peripheral cortical sites after intramedullary implantation of a pin containing ultrapure magnesium into the intact distal femur in rats. This response was accompanied by substantial increases of neuronal calcitonin gene-related polypeptide-α (CGRP) in both the peripheral cortex of the femur and the ipsilateral dorsal root ganglia (DRG). Surgical removal of the periosteum, capsaicin denervation of sensory nerves or knockdown in vivo of the CGRP-receptor-encoding genes Calcrl or Ramp1 substantially reversed the magnesium-induced osteogenesis that we observed in this model. Overexpression of these genes, however, enhanced magnesium-induced osteogenesis. We further found that an elevation of extracellular magnesium induces magnesium transporter 1 (MAGT1)-dependent and transient receptor potential cation channel, subfamily M, member 7 (TRPM7)-dependent magnesium entry, as well as an increase in intracellular adenosine triphosphate (ATP) and the accumulation of terminal synaptic vesicles in isolated rat DRG neurons. In isolated rat periosteum-derived stem cells, CGRP induces CALCRL- and RAMP1-dependent activation of cAMP-responsive element binding protein 1 (CREB1) and SP7 (also known as osterix), and thus enhances osteogenic differentiation of these stem cells. Furthermore, we have developed an innovative, magnesium-containing intramedullary nail that facilitates femur fracture repair in rats with ovariectomy-induced osteoporosis. Taken together, these findings reveal a previously undefined role of magnesium in promoting CGRP-mediated osteogenic differentiation, which suggests the therapeutic potential of this ion in orthopedics.
3. CGRP as the target of new migraine therapies - successful translation from bench to clinic
Lars Edvinsson, Kristian Agmund Haanes, Karin Warfvinge, Diana N Krause Nat Rev Neurol. 2018 Jun;14(6):338-350. doi: 10.1038/s41582-018-0003-1.
Treatment of migraine is on the cusp of a new era with the development of drugs that target the trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. Several of these drugs are expected to receive approval for use in migraine headache in 2018 and 2019. CGRP-related therapies offer considerable improvements over existing drugs as they are the first to be designed specifically to act on the trigeminal pain system, they are more specific and they seem to have few or no adverse effects. CGRP receptor antagonists such as ubrogepant are effective for acute relief of migraine headache, whereas monoclonal antibodies against CGRP (eptinezumab, fremanezumab and galcanezumab) or the CGRP receptor (erenumab) effectively prevent migraine attacks. As these drugs come into clinical use, we provide an overview of knowledge that has led to successful development of these drugs. We describe the biology of CGRP signalling, summarize key clinical evidence for the role of CGRP in migraine headache, including the efficacy of CGRP-targeted treatment, and synthesize what is known about the role of CGRP in the trigeminovascular system. Finally, we consider how the latest findings provide new insight into the central role of the trigeminal ganglion in the pathophysiology of migraine.
Online Inquiry
Verification code
Inquiry Basket