Colivelin TFA
Need Assistance?
  • US & Canada:
    +
  • UK: +

Colivelin TFA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is a neuroprotective peptide and activator of STAT3.

Category
Peptide Inhibitors
Catalog number
BAT-009359
Molecular Formula
C119H206N32O35.C2HF3O2
Molecular Weight
2759.12
IUPAC Name
(2S)-1-[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-1-[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]propanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbonyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]propanoyl]amino]acetyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]acetyl]amino]-4-carboxybutanoyl]amino]-3-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carboxylic acid;2,2,2-trifluoroacetic acid
Synonyms
Ser-Ala-Leu-Leu-Arg-Ser-Ile-Pro-Ala-Pro-Ala-Gly-Ala-Ser-Arg-Leu-Leu-Leu-Leu-Thr-Gly-Glu-Ile-Asp-Leu-Pro.TFA; Colivelin Trifluoroacetate; L-seryl-L-alanyl-L-leucyl-L-leucyl-L-arginyl-L-seryl-L-isoleucyl-L-prolyl-L-alanyl-L-prolyl-L-alanyl-glycyl-L-alanyl-L-seryl-L-arginyl-L-leucyl-L-leucyl-L-leucyl-L-leucyl-L-threonyl-glycyl-L-alpha-glutamyl-L-isoleucyl-L-alpha-aspartyl-L-leucyl-L-proline trifluoroacetic acid
Related CAS
867021-83-8 (free base)
Appearance
Powder
Purity
≥98%
Sequence
SALLRSIPAPAGASRLLLLTGEIDLP.TFA
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C119H206N32O35.C2HF3O2/c1-24-63(17)91(113(181)142-80(50-90(160)161)106(174)143-81(49-62(15)16)115(183)151-42-30-35-86(151)117(185)186)146-100(168)73(36-37-89(158)159)133-88(157)52-128-112(180)93(69(23)155)148-107(175)79(48-61(13)14)141-105(173)78(47-60(11)12)140-104(172)77(46-59(9)10)139-103(171)76(45-58(7)8)137-98(166)71(31-26-38-125-118(121)122)135-108(176)82(54-153)144-95(163)66(20)129-87(156)51-127-94(162)65(19)131-110(178)84-33-28-40-149(84)114(182)68(22)132-111(179)85-34-29-41-150(85)116(184)92(64(18)25-2)147-109(177)83(55-154)145-99(167)72(32-27-39-126-119(123)124)134-101(169)75(44-57(5)6)138-102(170)74(43-56(3)4)136-96(164)67(21)130-97(165)70(120)53-152;3-2(4,5)1(6)7/h56-86,91-93,152-155H,24-55,120H2,1-23H3,(H,127,162)(H,128,180)(H,129,156)(H,130,165)(H,131,178)(H,132,179)(H,133,157)(H,134,169)(H,135,176)(H,136,164)(H,137,166)(H,138,170)(H,139,171)(H,140,172)(H,141,173)(H,142,181)(H,143,174)(H,144,163)(H,145,167)(H,146,168)(H,147,177)(H,148,175)(H,158,159)(H,160,161)(H,185,186)(H4,121,122,125)(H4,123,124,126);(H,6,7)/t63-,64-,65-,66-,67-,68-,69+,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,91-,92-,93-;/m0./s1
InChI Key
NZGMKGSVXAHDKB-YHBBYXROSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)CNC(=O)C(C(C)O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(C)NC(=O)CNC(=O)C(C)NC(=O)C2CCCN2C(=O)C(C)NC(=O)C3CCCN3C(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CO)N.C(=O)(C(F)(F)F)O
1. Promotion Effect of EGCG on the Raised Expression of IL-23 through the Signaling of STAT3-BATF2-c-JUN/ATF2
Yaozhong Hu, Jiaxin Gu, Yi Wang, Jing Lin, Huaning Yu, Feier Yang, Sihao Wu, Jia Yin, Huan Lv, Xuemeng Ji, Shuo Wang J Agric Food Chem. 2021 Jul 21;69(28):7898-7909. doi: 10.1021/acs.jafc.1c02433. Epub 2021 Jul 6.
Tea polyphenol of epigallocatechin-3-gallate (EGCG) has been verified to possess multiple biological activities. Interleukin-23 (IL-23) is a heterodimeric cytokine consisting of two subunits of IL-23p19 and IL-12p40, with the functionality in regulating the production of cytokines under physiological or pathological conditions. By serendipity, the raised expression of IL-23 was observed after treating cells with EGCG, whereas the detailed mechanism remains poorly understood. This study was proposed to investigate the signaling related to EGCG-induced IL-23. The raised expression of IL-23 was confirmed primarily by intraperitoneally injecting with different concentrations of EGCG (0, 20, 50, 80 mg/kg) into BALB/c mice, and the raised expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results from enzyme-linked immunosorbent assay (ELISA) revealed the increase of IL-23 in serum from 116.09 to 153.90 pg/mL after treating with EGCG. The same results were also observed in RAW264.7 and peritoneal macrophages after treating with EGCG (0, 1, 5, 10, 25 μM) with the increased tendency of IL-23 in cultural medium (7.98 to 25.38 pg/mL for RAW264.7; 3.64 to 260.93 pg/mL for peritoneal macrophages). After preliminary exploration of the signaling related to the increased IL-23, the classical signaling pathways and key transcription factors, such as nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathways, and interferon regulatory factor 5 (IRF5), were demonstrated with no relevant contribution. A further study revealed the involvement of the key transcription factor of BATF2, which could antagonistically modulate the transcription and translation of IL-23. The signaling of STAT3-BATF2-c-JUN/ATF2-IL-23 has been further verified in RAW264.7 macrophages using the STAT3 inhibitor of AG490 and the activator of Colivelin TFA. The results indicated that EGCG inhibits the phosphorylation of STAT3 to facilitate the decreased level of BATF2, which contributed to the increased level of IL-23 by the enhancing heterodimerization of c-JUN and ATF2.
2. PM2.5 promoted lipid accumulation in macrophage via inhibiting JAK2/STAT3 signaling pathways and aggravating the inflammatory reaction
Liwei Yang, Zikai Song, Yang Pan, Tianyang Zhao, Yanbin Shi, Jiqiang Xing, Aipeng Ju, Liting Zhou, Lin Ye Ecotoxicol Environ Saf. 2021 Dec 15;226:112872. doi: 10.1016/j.ecoenv.2021.112872. Epub 2021 Oct 5.
Background: Abnormal lipid accumulation in macrophages may lead to macrophages foaming, which is the most important pathological process of atherosclerosis. Atmospheric PM2.5 could enter the blood circulation and further affect the lipid metabolism of macrophages. But the underlying mechanism is not unclear. This study was undertaken to clarify the effect of PM2.5 on lipid metabolism in macrophages, and to explore the role of inflammatory reaction and JAK2/STAT3 signaling pathway in this process. Method: Macrophages derived from THP-1 cells were exposed to PM2.5 (0,100,200,400 μg/mL) for 6 h and 12 h. STAT3 agonist ColivelinTFA is used to specifically excite STAT3. The survival rate of macrophages was detected by CCK-8. The lipid levels in macrophages were detected by colorimetry. The levels of inflammatory factors secreted by macrophages were detected by ELISA. Q-PCR was used to detect the mRNA expression levels, and Western Blot was used to detect the protein expression levels of JAK2/STAT3 pathway genes. Result: The survival rate of macrophages was reduced by PM2.5, and the levels of TG, T-CHO and LDL-C of macrophages exposed to PM2.5 were increased. PM2.5 led to the increasing level of IL-6 and the decreasing level of IL-4, and the JAK2/STAT3 signaling pathway was inhibited by PM2.5. Colivelin TFA significantly decreased the increasing levels of TG, T-CHO and LDL-C levels, and increased the decreasing mRNA levels of IL-4, and LPL induced by PM2.5 (p < 0.05). Discussion: PM2.5 could cause the lipid accumulation of macrophages by inhibiting the JAK2/STAT3 signaling pathway, and inflammatory responses may be involved in this process.
3. MFG-E8 alleviates oxygen-glucose deprivation-induced neuronal cell apoptosis by STAT3 regulating the selective polarization of microglia
Ying-Ying Fang, Jing-Hui Zhang Int J Neurosci. 2021 Jan;131(1):15-24. doi: 10.1080/00207454.2020.1732971. Epub 2020 Mar 12.
Background: Ischemic stroke is a complex pathological process, involving inflammatory reaction, energy metabolism disorder, free radical injury, cell apoptosis and other aspects. Accumulating evidences have revealed that MFG-E8 had a protective effect on multiple organ injuries. However, the comprehensive function and mechanism of MFG-E8 in ischemic brain remain largely unclear.Methods: BV-2 cells were treated with recombinant murine MFG-E8 (rmMFG-E8) or/and Colivelin TFA after exposing for 4 h with oxygen glucose deprivation (OGD). Cell viability and apoptosis were assessed by MTT assay and Flow cytometry. RT-qPCR and Western blot assays were applied to examine the expression levels of MFG-E8, apoptosis-related proteins and M1/M2 polarization markers.Results: Our results demonstrated that OGD significantly inhibited microglial viability and facilitated apoptosis. In addition, we found that OGD downregulated MFG-E8 expression, and MFG-E8 inhibited OGD-induced microglial apoptosis and promoted microglial M2 polarization. In terms of mechanism, we proved that MFG-E8 regulated OGD-induced microglial M1/M2 polarization by inhibiting p-STAT3 and SOCS3 expressions, which was reversed by STAT3 activator (Colivelin TFA). Finally, we verified MFG-E8 alleviated OGD-induced neuronal cell apoptosis by M2 polarization of BV-2 cells.Conclusions: We demonstrated that MFG-E8 reduced neuronal cell apoptosis by enhancing activation of microglia via STAT3 signaling. Therefore, we suggested that MFG-E8 might provide a novel mechanism for ischemic stroke.
Online Inquiry
Verification code
Inquiry Basket