Conantokin-T
Need Assistance?
  • US & Canada:
    +
  • UK: +

Conantokin-T

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Conantokin-T is a non-competitive NMDA receptor antagonist with IC50 value of 0.4 μM. It inhibits Ca2+ influx and glutamate-induced toxicity in central nervous system neurons. It has age-dependent physiological effects. It induces hyperactivity in older mice and a sleep-like state in young mice.

Category
Peptide Inhibitors
Catalog number
BAT-010252
CAS number
127476-26-0
Molecular Formula
C110H175N31O45S
Molecular Weight
2683.8
Conantokin-T
IUPAC Name
2-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-4-carboxybutanoyl]amino]-4,4-dicarboxybutanoyl]amino]-4,4-dicarboxybutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-oxopentanoyl]amino]hexanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-methylpentanoyl]amino]-4,4-dicarboxybutanoyl]amino]-4-oxobutanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[(2S)-1-amino-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-oxopropyl]propanedioic acid
Synonyms
Conantokin t
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.6±0.1 g/cm3
Sequence
GEXXYQKMLXNLRXAEVKKNA
Storage
Store at -20°C
Application
Excitatory Amino Acid Antagonists
InChI
InChI=1S/C110H175N31O45S/c1-47(2)37-66(94(163)128-61(20-16-35-121-110(119)120)87(156)135-69(40-54(102(171)172)103(173)174)92(161)123-51(8)83(152)125-64(27-30-80(149)150)91(160)141-81(49(5)6)101(170)131-60(19-12-15-34-113)85(154)126-59(18-11-14-33-112)86(155)139-73(44-76(116)144)93(162)122-50(7)82(118)151)133-100(169)74(45-77(117)145)140-99(168)72(43-57(108(183)184)109(185)186)137-95(164)67(38-48(3)4)132-90(159)65(31-36-187-9)130-84(153)58(17-10-13-32-111)127-89(158)63(25-28-75(115)143)129-96(165)68(39-52-21-23-53(142)24-22-52)134-97(166)71(42-56(106(179)180)107(181)182)138-98(167)70(41-55(104(175)176)105(177)178)136-88(157)62(26-29-79(147)148)124-78(146)46-114/h21-24,47-51,54-74,81,142H,10-20,25-46,111-114H2,1-9H3,(H2,115,143)(H2,116,144)(H2,117,145)(H2,118,151)(H,122,162)(H,123,161)(H,124,146)(H,125,152)(H,126,154)(H,127,158)(H,128,163)(H,129,165)(H,130,153)(H,131,170)(H,132,159)(H,133,169)(H,134,166)(H,135,156)(H,136,157)(H,137,164)(H,138,167)(H,139,155)(H,140,168)(H,141,160)(H,147,148)(H,149,150)(H,171,172)(H,173,174)(H,175,176)(H,177,178)(H,179,180)(H,181,182)(H,183,184)(H,185,186)(H4,119,120,121)/t50-,51-,58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,81-/m0/s1
InChI Key
UFVIUSQQHPISRQ-HNJXWIPGSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC(C(=O)O)C(=O)O)C(=O)NC(CC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C(=O)O)C(=O)O)C(=O)NC(C)C(=O)NC(CCC(=O)O)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(C)C(=O)N)NC(=O)C(CCSC)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)N)NC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C(CC(C(=O)O)C(=O)O)NC(=O)C(CC(C(=O)O)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)CN
1. Conantokin-T selectively antagonizes N-methyl-D-aspartate-evoked responses in rat hippocampal slice
P C Lyu, C C Huang, C H Lin, K S Hsu Toxicon . 1997 Mar;35(3):355-63. doi: 10.1016/s0041-0101(96)00171-7.
This study investigated the mode of action of conantokin-T, a 21 amino acid peptide toxin isolated from the venom of the fish-hunting cone snail Conus tulipa, on excitatory synaptic transmission in rat hippocampal slices using intracellular recording techniques. Superfusion of conantokin-T (1-500 nM) specifically and irreversibly decreased the pharmacologically isolated N-methyl-D-aspartate receptor (NMDA)-mediated excitatory postsynaptic potential (EPSPNMDA) in a concentration-dependent manner but had no effect on normal excitatory synaptic transmission (EPSP). The sensitivity of postsynaptic neurons to NMDA but not to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid was also antagonized by conantokin-T pretreatment. In addition, the conantokin-T-induced depression of EPSPNMDA could be antagonized by prior treatment of hippocampal slices with either DL-2-amino-5-phosphonovaleate (10 microM) or ifenprodil (20 microM). However, 7-chlorokynurenic acid (1 microM) had no effect on the action of conantokin-T. These findings indicated that conantokin-T modulates the NMDA receptor by an interaction with its glutamate binding site and polyamine recognition site.
2. Binding of cations to individual gamma-carboxyglutamate residues of conantokin-G and conantokin-T
F J Castellino, T Blandl, M Prorok, S E Warder J Pept Res . 1999 Apr;53(4):453-64. doi: 10.1034/j.1399-3011.1999.00042.x.
Conantokin-G (con-G) and conantokin-T (con-T) are naturally occurring gamma-carboxyglutamate (Gla)-containing peptides that interact with multivalent cations in functionally relevant manners. Selective 13C-enrichment of Cgamma and Cdelta in each of the Gla residues has allowed metal binding affinities to be measured at individual side chains. Con-T possesses two metal binding sites, one with high affinity at Gla10/Gla14 and another with weak binding at Gla3/Gla4. Con-G contains two sites of comparable low affinity for Ca2+. Analysis of the 13C line-widths of con-G in the presence of Mg2+ allowed the order of metal binding to be determined, with Gla10/Gla14 loading before the Gla3/Gla4/Gla7 cluster. While the variant peptide, apo-con-T[Lys7Gla], was shown to have a very low alpha-helical content, this peptide binds a second metal with much greater affinity than wild-type con-T. This provides additional evidence that Gla7 in con-G is primarily responsible for destabilizing the apo-form, but is an important ligand for metal chelation. The residue-specific alpha-helical stabilities of con-G and con-T in their metal-free and metal-loaded states were estimated by determining rates of proton exchange from backbone peptide bond amides with deuterium atoms from 2H20-containing solvents. For both peptides, the lifetimes of protons on several peptide bond amides increased as metals of higher affinity were bound to the peptides, with the longest half-lives found in the region of the alpha-helical turn stabilized by the Gla10/Gla14 metal coordination site. We propose that Gla10 and Gla14 constitute the primary tight metal ion binding site in both peptides. This detailed analysis with physiologically relevant metal cations is crucial for deciphering the roles of critical amino acids in the bioactivity of the conantokin peptides.
3. Thermodynamics of binding of calcium, magnesium, and zinc to the N-methyl-D-aspartate receptor ion channel peptidic inhibitors, conantokin-G and conantokin-T
F J Castellino, M Prorok J Biol Chem . 1998 Jul 31;273(31):19573-8. doi: 10.1074/jbc.273.31.19573.
The binding isotherms of the divalent metal cations, Ca2+, Mg2+, and Zn2+, to the synthetic gamma-carboxyglutamic acid-containing neuroactive peptides, conantokin-G (con-G) and conantokin-T (con-T), have been determined by isothermal titration calorimetry (ITC) at 25 degreesC and pH 6.5. We have previously shown by potentiometric measurements that con-G contains 2-3 equivalent Ca2+ sites with an average Kd value of 2800 microM. With Mg2+ as the ligand, two separate exothermic sites are obtained by ITC, one of Kd = 46 microM and another of Kd = 311 microM. Much tighter binding of Zn2+ is observed for these latter two sites (Kd values = 0.2 microM and 1.1 microM), and a third considerably weaker binding site is observed, characterized by a Kd value of 286 microM and an endothermic enthalpy of binding. con-T possesses a single exothermic tight binding site for Ca2+, Mg2+, and Zn2+, with Kd values of 428 microM, 10.2 microM, and 0.5 microM, respectively. Again, in the case of con-T, a weak (Kd = 410 microM) endothermic binding site is observed for Zn2+. The binding of these cations to con-G and con-T result in an increase in the alpha-helical content of the peptides. However, this helix is somewhat destabilized in both cases by binding of Zn2+ to its weakest site. Since the differences observed in binding affinities of these three cations to the peptides are substantially greater than their comparative Kd values to malonate, we conclude that the structure of the peptide and, most likely, the steric and geometric properties imposed on the cation site as a result of peptide folding greatly influence the strength of the interaction of cations with con-G and con-T. Further, since the Zn2+ concentrations released in the synaptic cleft during excitatory synaptic activity are sufficiently high relative to the Kd of Zn2+ for con-G and con-T, this cation along with Mg2+, are most likely the most significant metal ion ligands of these peptides in neuronal cells.
Online Inquiry
Verification code
Inquiry Basket