μ-Conotoxin GIIIA
Need Assistance?
  • US & Canada:
    +
  • UK: +

μ-Conotoxin GIIIA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

µ-Conotoxin GIIIA, originally isolated from the venom of the marine snail Conus geographus L, blocks sodium channels of muscle subtypes with very high selectivity.

Category
Peptide Inhibitors
Catalog number
BAT-015143
CAS number
129129-65-3
Molecular Formula
C100H170N38O32S6
Molecular Weight
2609.08
μ-Conotoxin GIIIA
IUPAC Name
(3S)-3-[[(2S)-2-amino-5-carbamimidamidopentanoyl]amino]-4-oxo-4-[[(1R,4S,7S,10S,12R,16S,19R,22S,25S,28S,31S,34R,37S,40S,43S,45R,49S,51R,55S,58R,65R,72R)-16,31,37,40-tetrakis(4-aminobutyl)-65-[[(2S)-1-amino-1-oxopropan-2-yl]carbamoyl]-7,22-bis(3-amino-3-oxopropyl)-4,25-bis(3-carbamimidamidopropyl)-28-(carboxymethyl)-12,45,51-trihydroxy-55-[(1R)-1-hydroxyethyl]-3,6,9,15,18,21,24,27,30,33,36,39,42,48,54,57,63,71-octadecaoxo-60,61,67,68,74,75-hexathia-2,5,8,14,17,20,23,26,29,32,35,38,41,47,53,56,64,70-octadecazahexacyclo[32.28.7.719,58.010,14.043,47.049,53]hexaheptacontan-72-yl]amino]butanoic acid
Synonyms
L-arginyl-L-alpha-aspartyl-L-cysteinyl-L-cysteinyl-L-threonyl-(4R)-4-hydroxy-L-prolyl-(4R)-4-hydroxy-L-prolyl-L-lysyl-L-lysyl-L-cysteinyl-L-lysyl-L-alpha-aspartyl-L-arginyl-L-glutaminyl-L-cysteinyl-L-lysyl-(4R)-4-hydroxy-L-prolyl-L-glutaminyl-L-arginyl-L-cysteinyl-L-cysteinyl-L-alaninamide (3->15),(4->20),(10->21)-tris(disulfide); H-Arg-Asp-Cys-Cys-Thr-Hyp-Hyp-Lys-Lys-Cys-Lys-Asp-Arg-Gln-Cys-Lys-Hyp-Gln-Arg-Cys-Cys-Ala-NH2 (Disulfide bridge: Cys3-Cys15, Cys4-Cys20, Cys10-Cys21); Geographutoxin I; mu-conotoxin GIIIA
Appearance
White Lyophilized Powder
Purity
95%
Density
1.7±0.1 g/cm3
Sequence
RDCCT-Hyp-Hyp-KKCKDRQCK-Hyp-QRCCA (Disulfide bridge: Cys3-Cys15, Cys4-Cys20, Cys10-Cys21)
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C100H170N38O32S6/c1-46(76(108)149)118-87(160)62-40-171-172-41-63-88(161)122-52(15-3-7-25-101)80(153)128-61(36-74(147)148)85(158)121-55(19-12-30-116-99(111)112)79(152)123-57(21-23-71(106)143)84(157)131-64-42-173-175-44-66(132-86(159)60(35-73(145)146)127-77(150)51(105)14-11-29-115-98(109)110)91(164)134-67(92(165)135-75(47(2)139)97(170)138-39-50(142)34-70(138)96(169)137-38-49(141)33-69(137)94(167)124-54(17-5-9-27-103)78(151)119-53(81(154)129-63)16-4-8-26-102)45-176-174-43-65(90(163)133-62)130-82(155)56(20-13-31-117-100(113)114)120-83(156)58(22-24-72(107)144)125-93(166)68-32-48(140)37-136(68)95(168)59(126-89(64)162)18-6-10-28-104/h46-70,75,139-142H,3-45,101-105H2,1-2H3,(H2,106,143)(H2,107,144)(H2,108,149)(H,118,160)(H,119,151)(H,120,156)(H,121,158)(H,122,161)(H,123,152)(H,124,167)(H,125,166)(H,126,162)(H,127,150)(H,128,153)(H,129,154)(H,130,155)(H,131,157)(H,132,159)(H,133,163)(H,134,164)(H,135,165)(H,145,146)(H,147,148)(H4,109,110,115)(H4,111,112,116)(H4,113,114,117)/t46-,47+,48+,49+,50+,51-,52-,53-,54-,55-,56-,57-,58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,75-/m0/s1
InChI Key
JXBJHMUQZOSJPJ-HTVVLJMASA-N
Canonical SMILES
CC(C1C(=O)N2CC(CC2C(=O)N3CC(CC3C(=O)NC(C(=O)NC(C(=O)NC4CSSCC(NC(=O)C5CSSCC(C(=O)N1)NC(=O)C(CSSCC(C(=O)NC(C(=O)N6CC(CC6C(=O)NC(C(=O)NC(C(=O)N5)CCCNC(=N)N)CCC(=O)N)O)CCCCN)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC4=O)CCCCN)CC(=O)O)CCCNC(=N)N)CCC(=O)N)NC(=O)C(CC(=O)O)NC(=O)C(CCCNC(=N)N)N)C(=O)NC(C)C(=O)N)CCCCN)CCCCN)O)O)O
1. mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains
S C Dudley Jr,R J French,H A Fozzard,N Chang,G Lipkind,J Hall J Gen Physiol . 2000 Nov;116(5):679-90. doi: 10.1085/jgp.116.5.679.
Voltage-gated Na(+) channels underlie the electrical activity of most excitable cells, and these channels are the targets of many antiarrhythmic, anticonvulsant, and local anesthetic drugs. The channel pore is formed by a single polypeptide chain, containing four different, but homologous domains that are thought to arrange themselves circumferentially to form the ion permeation pathway. Although several structural models have been proposed, there has been no agreement concerning whether the four domains are arranged in a clockwise or a counterclockwise pattern around the pore, which is a fundamental question about the tertiary structure of the channel. We have probed the local architecture of the rat adult skeletal muscle Na(+) channel (mu1) outer vestibule and selectivity filter using mu-conotoxin GIIIA (mu-CTX), a neurotoxin of known structure that binds in this region. Interactions between the pore-forming loops from three different domains and four toxin residues were distinguished by mutant cycle analysis. Three of these residues, Gln-14, Hydroxyproline-17 (Hyp-17), and Lys-16 are arranged approximately at right angles to each other in a plane above the critical Arg-13 that binds directly in the ion permeation pathway. Interaction points were identified between Hyp-17 and channel residue Met-1240 of domain III and between Lys-16 and Glu-403 of domain I and Asp-1532 of domain IV. These interactions were estimated to contribute -1.0+/-0.1, -0.9+/-0.3, and -1.4+/-0.1 kcal/mol of coupling energy to the native toxin-channel complex, respectively. mu-CTX residues Gln-14 and Arg-1, both on the same side of the toxin molecule, interacted with Thr-759 of domain II. Three analytical approaches to the pattern of interactions predict that the channel domains most probably are arranged in a clockwise configuration around the pore as viewed from the extracellular surface.
2. Roles of basic amino acid residues in the activity of μ-conotoxin GIIIA and GIIIB, peptide blockers of muscle sodium channels
Yoko Yamaguchi,Kazuki Sato,Yukisato Ishida,Yasushi Ohizumi Chem Biol Drug Des . 2015 Apr;85(4):488-93. doi: 10.1111/cbdd.12433.
To study in detail the roles of basic amino acid residues in the activity of μ-conotoxin GIIIA (μ-GIIIA) and GIIIB (μ-GIIIB), specific blockers of muscle sodium channels, seven analogs of μ-GIIIA, and two analogs of μ-GIIIB were synthesized. μ-GIIIA analogs were synthesized by replacing systematically the three Arg residues (Arg1, Arg13, and Arg19) with one, two, and three Lys residues. μ-GIIIB analogs were synthesized by replacing simultaneously all four Lys residues (Lys9, Lys11, Lys16, and Lys19) with Arg residues and further replacement of acidic Asp residues with neutral Ala residues. Circular dichroism spectra of the synthesized analogs suggested that the replacement did not affect the three dimensional structure. The inhibitory effects on the twitch contractions of the rat diaphragm showed that the side chain guanidino group of Arg13 of μ-GIIIA was important for the activity, whereas that of Arg19 had little role for biological activity. Although [Arg9,11,16,19]μ-GIIIB showed higher activity than native μ-GIIIB, highly basic [Ala2,12, Arg9,11,16,19]μ-GIIIB showed lower activity, suggesting that there was an appropriate molecular basicity for the maximum activity.
3. A tyrosine-containing analog of mu-conotoxin GIIIA as ligand in the receptor binding assay for paralytic shellfish poisons
Lourdes J Cruz,Aileen D L Mendoza,Elvira Z Sombrito Toxicon . 2015 Jun 1;99:95-101. doi: 10.1016/j.toxicon.2015.03.016.
Development of novel analytical tools to detect marine biotoxins has been warranted in view of the apparent global pervasiveness of algal-derived shellfish poisoning, and the limitations of existing methods. Here, we describe the initial phase in the development and evaluation of a tyrosine-containing analog of μ-conotoxin (μ-CTX) GIIIA as an alternative to saxitoxin (STX) in a receptor binding assay (RBA) for paralytic shellfish poisons. The peptide analog was synthesized and characterized for structure and bioactivity. The major product of oxidation elicited paralytic symptoms in mice at a minimum dose of 1.31 mg kg(-1) (i.p.). Mass spectrometry analysis of the bioactive peptide gave a molecular mass of 2637.52 Da that was close to the predicted value. Iodination via chloramine-T produced non-, mono- and di-iodinated peptides (respectively, NIP, MIP and DIP). Competition assays against (3)H-STX revealed higher Ki and EC50 (P < 0.0001, ANOVA) indicating reduced affinity for the receptor, and limited displacement of receptor-bound STX. However, subsequent use of MIP may extend the application of RBA to detect small changes in toxin levels owing to its likely enhanced displacement by STX. This may be useful in analyzing samples with toxicities near the regulatory limit, or in establishing baseline values in high risk environments.
4. Effects of modification at the fifth residue of mu-conotoxin GIIIA with bulky tags on the electrically stimulated contraction of the rat diaphragm
K Sato,Y Oba,H Nakamura,T Kohno,Y Ishida,M Nakamura J Pept Res . 2004 Sep;64(3):110-7. doi: 10.1111/j.1399-3011.2004.00175.x.
Mu-conotoxin GIIIA, a peptide toxin from the cone snail, blocks muscle-type sodium channels. Thr-5 of mu-conotoxin GIIIA, located on the opposite side of the active site in the globular molecule, was replaced by Cys to which the bulky tags were attached. The tagged mu-conotoxin GIIIA derivatives, except for the phospholipid-tagged one, exerted the biological activity with a potency slightly weaker than natural mu-conotoxin GIIIA. When the biotinylated tags of various lengths were added, the presence of avidin suppressed the action of the biotinylated toxins of <4 nm, but not with 5 nm. The bulky biotinylated tags are useful as a caliper to measure the depth of receptor sites in the channels.
Online Inquiry
Verification code
Inquiry Basket