Crustacean Cardioactive Peptide
Need Assistance?
  • US & Canada:
    +
  • UK: +

Crustacean Cardioactive Peptide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Crustacean Cardioactive Peptide displayed high ino- and chronotropic effects on a semi-isolated crab heart preparation.

Category
Others
Catalog number
BAT-015836
CAS number
107090-96-0
Molecular Formula
C42H57N11O11S2
Molecular Weight
956.10
Crustacean Cardioactive Peptide
IUPAC Name
(4R,10S,13S,16S,19S,22R)-19-(2-amino-2-oxoethyl)-13-benzyl-10-[(1R)-1-hydroxyethyl]-16-methyl-6,9,12,15,18,21-hexaoxo-22-[[(2S)-3-phenyl-2-[[(2S)-pyrrolidine-2-carbonyl]amino]propanoyl]amino]-1,2-dithia-5,8,11,14,17,20-hexazacyclotricosane-4-carboxamide
Synonyms
CCAP; H-Pro-Phe-Cys-Asn-Ala-Phe-Thr-Gly-Cys-NH2 (Disulfide bond)
Purity
95%
Sequence
PFCNAFTGC
Storage
Store at -20°C
InChI
InChI=1S/C42H57N11O11S2/c1-22-36(58)49-28(17-25-12-7-4-8-13-25)40(62)53-34(23(2)54)42(64)46-19-33(56)48-30(35(44)57)20-65-66-21-31(41(63)51-29(18-32(43)55)38(60)47-22)52-39(61)27(16-24-10-5-3-6-11-24)50-37(59)26-14-9-15-45-26/h3-8,10-13,22-23,26-31,34,45,54H,9,14-21H2,1-2H3,(H2,43,55)(H2,44,57)(H,46,64)(H,47,60)(H,48,56)(H,49,58)(H,50,59)(H,51,63)(H,52,61)(H,53,62)/t22-,23+,26-,27-,28-,29-,30-,31-,34-/m0/s1
InChI Key
KUAKWTJOHSDJOA-HNGYRCOKSA-N
Canonical SMILES
CC1C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(CSSCC(C(=O)NC(C(=O)N1)CC(=O)N)NC(=O)C(CC2=CC=CC=C2)NC(=O)C3CCCN3)C(=O)N)C(C)O)CC4=CC=CC=C4
1. Crustacean cardioactive peptide as a stimulator of feeding and a regulator of ecdysis in Leptinotarsa decemlineata
Chen-Hui Shen, Lin Jin, Kai-Yun Fu, Wen-Chao Guo, Guo-Qing Li Pestic Biochem Physiol. 2021 Jun;175:104838. doi: 10.1016/j.pestbp.2021.104838. Epub 2021 Apr 3.
Crustacean cardioactive peptide (CCAP), a highly conserved amidated neuropeptide, stimulates feeding in Drosophila melanogaster and Periplaneta americana, and regulates pupa-adult transition in Tribolium castaneum and Manduca sexta. In the present paper, we intended to address whether CCAP plays the dual roles in the Colorado potato beetle Leptinotarsa decemlineata. We found that the levels of Ldccap were high in the dissected samples of brain-corpora cardiaca-corpora allata complex and ventral nerve cord, midgut and hindgut in the final (fourth)-instar larvae. A pulse of 20-hydroxyecdysone triggered the expression of Ldccap in the central nervous system but decreased the transcription in the midgut. In contrast, juvenile hormone intensified the expression of Ldccap in the midgut. RNA interference (RNAi)-aided knockdown of Ldccap at the penultimate instar stage inhibited foliage consumption, reduced the contents of trehalose and chitin, and lowered the mRNA levels of two chitin biosynthesis genes (LdUAP1 and LdChSAb). Moreover, around 70% of the Ldccap RNAi larvae remained as prepupae, completely wrapped in the old larval exuviae, and finally died. The remaining RNAi beetles continually developed to severely-deformed adults: most having wrinkled and smaller elytra and hindwings, and shortened legs. Therefore, CCAP plays three distinct roles, stimulating feeding in foraging larval stage, regulating ecdysis, and facilitating wing expansion and appendage elongation in a coleopteran. In addition, Ldccap can be used as a potential target gene for developing novel management strategies against this coleopteran pest.
2. Immunomodulatory role of crustacean cardioactive peptide in the mud crab Scylla paramamosain
Yujie Wei, Zhanning Xu, Shuang Hao, Songlin Guo, Huiyang Huang, Haihui Ye Fish Shellfish Immunol. 2022 Feb;121:142-151. doi: 10.1016/j.fsi.2021.12.060. Epub 2022 Jan 6.
Crustacean cardioactive peptide (CCAP) is a pleiotropic neuropeptide, but its immunomodulatory role is not clear. Herein, the mud crab Scylla paramamosain provides a primitive model to study crosstalk between the neuroendocrine and immune systems. In this study, in situ hybridization showed that Sp-CCAP positive signal localized in multiple cells in the nervous tissue, while its conjugate receptor (Sp-CCAPR) positive signal mainly localized in the semigranular cells of hemocytes. The Sp-CCAP mRNA expression level in the thoracic ganglion was significantly up-regulated after lipopolysaccharide (LPS) stimulation, but the Sp-CCAP mRNA expression level was up-regulated firstly and then down-regulated after the stimulation of polyriboinosinic polyribocytidylic acid [Poly (I:C)]. After the injection of Sp-CCAP synthesis peptide, the phagocytosis ability of hemocytes was significantly higher than that of synchronous control group. Simultaneously, the mRNA expression of phagocytosis related gene (Sp-Rab5), nuclear transcription factor NF-κB homologues (Sp-Relish), C-type lectin (Sp-CTL-B), prophenoloxidase (Sp-proPO), pro-inflammatory cytokines factor (Sp-TNFSF, Sp-IL16) and antimicrobial peptides (Sp-ALF1 and Sp-ALF5) in the hemocytes were also significantly up-regulated at different time points after the injection of Sp-CCAP synthetic peptide, but Sp-TNFSF, Sp-ALF1 and Sp-ALF5 were down-regulated significantly at 24h. In addition, RNA interference of Sp-CCAP suppressed the phagocytic activity of hemocytes and inhibited the mRNA expression of Sp-Rab5, Sp-Relish, Sp-CTL-B, Sp-TNFSF, Sp-IL16 and Sp-ALF5 in the hemocytes, and ultimately weakened the ability of hemolymph bacteria clearance of mud crab. Taken together, these results revealed that CCAP induced innate immune and increased the anti-infection ability in the mud crab.
3. Crustacean cardioactive peptide and its receptor modulate the ecdysis behavior in the pea aphid, Acyrthosiphon pisum
Yan Shi, Tian-Yuan Liu, Bi-Yue Ding, Jinzhi Niu, Hong-Bo Jiang, Tong-Xian Liu, Jin-Jun Wang J Insect Physiol. 2022 Feb-Mar;137:104364. doi: 10.1016/j.jinsphys.2022.104364. Epub 2022 Feb 1.
Insects must undergo ecdysis for successful development and growth, in which crustacean cardioactive peptide (CCAP) is a master hormone. However, the function of CCAP signaling in pea aphid, Acyrthosiphon pisum, remains unclear. In this study, we determined the sequence of the CCAP precursor and its receptor in A. pisum. We identified the functional receptor ApCCAPR, and then expressed this receptor in Chinese hamster ovary (CHO) cells, which in consequence exhibited high sensitivity to the ApCCAP mature peptide. The ApCCAP transcript was detected in the central nervous system of A. pisum. Neurons containing CCAP were also identified by immunohistochemical staining against insect CCAP. RNAi silencing of ApCCAP or ApCCAP-R signals caused developmental failure during nymph-adult ecdysis. The dsRNA-treated fourth-instar nymphs could not shed their old cuticle and died. Taking these findings together, we conclude that ApCCAP, via the activation of ApCCAP-R, plays an essential role in regulating the process of nymph-adult ecdysis in A. pisum. Our results deepen our understanding of the regulation of early ecdysis in A. pisum.
Online Inquiry
Verification code
Inquiry Basket