Cycloviolacin-O2
Need Assistance?
  • US & Canada:
    +
  • UK: +

Cycloviolacin-O2

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Cycloviolacin-O2 is isolated from Viola odorata. It probably participates in a plant defense mechanism. Cycloviolacin-O2 has strong cytotoxic activity against a variety of drug-resistant and drug-sensitive human tumor cell lines, and against primary chronic lymphocytic leukemia and ovarian carcinoma cells. It also has weaker cytotoxic activity against normal lymphocytes and hemolytic activity.

Category
Functional Peptides
Catalog number
BAT-012292
CAS number
261714-23-2
Molecular Formula
C133H207N37O39S6
Molecular Weight
3140.7
IUPAC Name
3-[(1R,4S,7S,13R,16S,22S,28S,31S,34S,37R,40S,43S,46S,49S,52R,55S,58R,64S,67S,70S,73S,76S,79R,82S,88S,91S,94S)-43,49-bis(4-aminobutyl)-28-(2-amino-2-oxoethyl)-22,64,76,88-tetrakis[(2S)-butan-2-yl]-31-(3-carbamimidamidopropyl)-4,46,55,70,73-pentakis(hydroxymethyl)-34-[(4-hydroxyphenyl)methyl]-91-(1H-indol-3-ylmethyl)-67-methyl-3,6,9,12,15,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,87,90,93,96-triacontaoxo-40,94-di(propan-2-yl)-2a,3a,6a,7a,98,99-hexathia-2,5,8,11,14,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,86,89,92,95-triacontazahexacyclo[50.44.4.413,58.437,79.016,20.082,86]octahectan-7-yl]propanoic acid
Synonyms
Cycloviolacin-O2; IHB9R8ET7W; CHEMBL4210529; cycloviolacin O2; 261714-23-2; Cyclo(Gly-Ile-Pro-Cys-Gly-Glu-Ser-Cys-Val-Trp-Ile-Pro-Cys-Ile-Ser-Ser-Ala-Ile-Gly-Cys-Ser-Cys-Lys-Ser-Lys-Val-Cys-Tyr-Arg-Asn) 4->18,6->22, 11->27 trisdisulfide; UNII-IHB9R8ET7W; CHEMBL4285275; BDBM50452159
Sequence
GIPCGESCVWIPCISSAIGCSCKSKVCYRN
InChI
InChI=1S/C133H207N37O39S6/c1-14-65(9)102-127(204)143-50-97(179)146-88-58-211-210-57-87-108(185)142-49-96(178)145-78(38-39-99(181)182)111(188)154-84(54-173)118(195)159-91-61-214-212-59-89(158-119(196)85(55-174)156-120(88)197)121(198)149-75(29-20-22-40-134)110(187)153-83(53-172)116(193)148-76(30-21-23-41-135)112(189)164-101(64(7)8)129(206)162-90(122(199)150-79(45-70-34-36-72(176)37-35-70)113(190)147-77(31-24-42-139-133(137)138)109(186)151-81(47-95(136)177)107(184)141-51-98(180)163-104(67(11)16-3)131(208)169-43-25-32-93(169)125(202)160-87)60-213-215-62-92(124(201)167-103(66(10)15-2)130(207)157-86(56-175)117(194)155-82(52-171)115(192)144-69(13)106(183)166-102)161-126(203)94-33-26-44-170(94)132(209)105(68(12)17-4)168-114(191)80(152-128(205)100(63(5)6)165-123(91)200)46-71-48-140-74-28-19-18-27-73(71)74/h18-19,27-28,34-37,48,63-69,75-94,100-105,140,171-176H,14-17,20-26,29-33,38-47,49-62,134-135H2,1-13H3,(H2,136,177)(H,141,184)(H,142,185)(H,143,204)(H,144,192)(H,145,178)(H,146,179)(H,147,190)(H,148,193)(H,149,198)(H,150,199)(H,151,186)(H,152,205)(H,153,187)(H,154,188)(H,155,194)(H,156,197)(H,157,207)(H,158,196)(H,159,195)(H,160,202)(H,161,203)(H,162,206)(H,163,180)(H,164,189)(H,165,200)(H,166,183)(H,167,201)(H,168,191)(H,181,182)(H4,137,138,139)/t65-,66-,67-,68-,69-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,100-,101-,102-,103-,104-,105-/m0/s1
InChI Key
LNKLNUAMTRHBLB-CGJDGIRVSA-N
Canonical SMILES
CCC(C)C1C(=O)NCC(=O)NC2CSSCC3C(=O)NCC(=O)NC(C(=O)NC(C(=O)NC4CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)C)CO)CO)C(C)CC)NC(=O)C5CCCN5C(=O)C(NC(=O)C(NC(=O)C(NC4=O)C(C)C)CC6=CNC7=CC=CC=C76)C(C)CC)C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)N8CCCC8C(=O)N3)C(C)CC)CC(=O)N)CCCNC(=N)N)CC9=CC=C(C=C9)O)C(C)C)CCCCN)CO)CCCCN)NC(=O)C(NC2=O)CO)CO)CCC(=O)O
1. Cycloviolacin O2 (CyO2) suppresses productive infection and augments the antiviral efficacy of nelfinavir in HIV-1 infected monocytic cells
Samantha L Gerlach, Mariamawit Yeshak, Ulf Göransson, Upal Roy, Reza Izadpanah, Debasis Mondal Biopolymers. 2013 Sep;100(5):471-9. doi: 10.1002/bip.22325.
Human immunodeficiency virus type-1 (HIV-1), the etiologic agent of acquired immune deficiency syndrome (AIDS), is a global pandemic causing millions of deaths annually. Highly active antiretroviral therapy (HAART) greatly enhances lifespan but eventually causes debilitating side effects, in part, due to their chronic administration required to suppress HIV-1 replication. If treatment is discontinued, viral suppression is lost and dormant replication-competent monocytic cell reservoirs become reactivated, leading to viral recrudescence and progression to AIDS. Therefore, novel strategies to circumvent obstacles to HIV-1 therapy are critically needed. We evaluated the potentially therapeutic effects of cycloviolacin O2 (CyO2) on cell viability (MTT assay), membrane disruption (SYTOX Green uptake), p24 production [enzyme-linked immunosorbent assays (ELISA)], and proviral integration (PCR amplification) in U1 cells; a monocytic cell model of HIV-1 latency and reactivation. We demonstrate, for the first time, that CyO2 (0.5-5.0 μM) kills productively infected cells. Sub-toxic concentrations (<0.5 μM) of CyO2 disrupted plasma membranes in both latently-infected and productively-infected U1 cells and enhanced the antiviral efficacy of nelfinavir, a HIV-1 protease inhibitor (HPI). Interestingly, CyO2 also decreased virus production by activated U1 cells; however, this effect was not due to suppression of integrated provirus in U1 cells. This suggested that, in addition to the known pore-forming ability of cyclotides, a novel mode of antiviral activity may exist for CyO2. Our data indicate that CyO2 may be a promising candidate for the targeting HIV-1 reservoirs in monocytes, and their inclusion in adjuvant therapy approaches may augment the efficacy of HPIs and ultimately facilitate virus elimination.
2. The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs
Samantha L Gerlach, Partha K Chandra, Upal Roy, Sunithi Gunasekera, Ulf Göransson, William C Wimley, Stephen E Braun, Debasis Mondal Medicines (Basel). 2019 Feb 28;6(1):33. doi: 10.3390/medicines6010033.
Background: Novel strategies to increase the efficacy of antiretroviral (ARV) drugs will be of crucial importance. We hypothesize that membranes of HIV-1-infected cells and enveloped HIV-1 particles may be preferentially targeted by the phytopeptide, cycloviolacin O2 (CyO2) to significantly enhance ARV efficacy. Methods: Physiologically safe concentrations of CyO2 were determined via red blood cell (RBC) hemolysis. SYTOX-green dye-uptake and radiolabeled saquinavir (³H-SQV) uptake assays were used to measure pore-formation and drug uptake, respectively. ELISA, reporter assays and ultracentrifugation were conducted to analyze the antiviral efficacy of HIV-1 protease and fusion inhibitors alone and co-exposed to CyO2. Results: CyO2 concentrations below 0.5 μM did not show substantial hemolytic activity, yet these concentrations enabled rapid pore-formation in HIV-infected T-cells and monocytes and increased drug uptake. ELISA for HIV-1 p24 indicated that CyO2 enhances the antiviral efficacy of both SQV and nelfinavir. CyO2 (< 0.5 μM) alone decreases HIV-1 p24 production, but it did not affect the transcription regulatory function of the HIV-1 long terminal repeat (LTR). Ultracentrifugation studies clearly showed that CyO2 exposure disrupted viral integrity and decreased the p24 content of viral particles. Furthermore, direct HIV-1 inactivation by CyO2 enhanced the efficacy of enfuvirtide. Conclusions: The membrane-active properties of CyO2 may help suppress viral load and augment antiretroviral drug efficacy.
3. Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice
Robert Burman, et al. Biopolymers. 2010;94(5):626-34. doi: 10.1002/bip.21408.
Cycloviolacin O2 is a small cyclic cysteine-rich protein belonging to the group of plant proteins called cyclotides. This cyclotide has been previously shown to exert cytotoxic activity against a variety of human tumor cell lines as well as primary cultures of human tumor cells in vitro. This study is the first evaluation of its tolerability and antitumor activity in vivo. Maximal-tolerated doses were estimated to 1.5 mg/kg for single intravenous (i.v.) dosing and 0.5 mg/kg for daily repeated dosing, respectively. Two different in vivo methods were used: the hollow fiber method with single dosing (i.v., 1.0 mg/kg) and traditional xenografts with repeated dosing over 2 weeks (i.v., 0.5 mg/kg daily, 5 days a week). The human tumor cell lines used displayed dose-dependent in vitro sensitivity (including growth in hollow fibers to confirm passage of cycloviolacin O2 through the polyvinylidene fluoride fibers), with IC5o values in the micromolar range. Despite this sensitivity in vitro, no significant antitumor effects were detected in vivo, neither with single dosing in the hollow fiber method nor with repeated dosing in xenografts. In summary, the results indicate that antitumor effects are minor or absent at tolerable (sublethal) doses, and cycloviolacin O2 has a very abrupt in vivo toxicity profile, with lethality after single injection at 2 mg/kg, but no signs of discomfort to the animals at 1.5 mg/kg. Repeated dosing of 1 mg/kg gave a local-inflammatory reaction at the site of injection after 2-3 days; lower doses were without complications.
Online Inquiry
Verification code
Inquiry Basket