D-Ala-Lys-AMCA
Need Assistance?
  • US & Canada:
    +
  • UK: +

D-Ala-Lys-AMCA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

D-Ala-Lys-AMCA is a proton-coupled oligopeptide transporter 1 (PEPT1) substrate that emits blue fluorescence.

Category
Peptide Inhibitors
Catalog number
BAT-006256
CAS number
375822-19-8
Molecular Formula
C21H28N4O6
Molecular Weight
432.47
D-Ala-Lys-AMCA
Size Price Stock Quantity
1 mg $519 In stock
IUPAC Name
(2S)-6-[[2-(7-amino-4-methyl-2-oxochromen-3-yl)acetyl]amino]-2-[[(2R)-2-aminopropanoyl]amino]hexanoic acid
Purity
>98%
Density
1.300±0.06 g/cm3(Predicted)
Boiling Point
826.2±65.0°C(Predicted)
Sequence
H-D-Ala-Lys(Unk)-OH
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C21H28N4O6/c1-11-14-7-6-13(23)9-17(14)31-21(30)15(11)10-18(26)24-8-4-3-5-16(20(28)29)25-19(27)12(2)22/h6-7,9,12,16H,3-5,8,10,22-23H2,1-2H3,(H,24,26)(H,25,27)(H,28,29)/t12-,16+/m1/s1
InChI Key
JBMWHNASOBPJQQ-WBMJQRKESA-N
Canonical SMILES
CC1=C(C(=O)OC2=C1C=CC(=C2)N)CC(=O)NCCCCC(C(=O)O)NC(=O)C(C)N
1. Specific expression of proton-coupled oligopeptide transporter 1 in primary hepatocarcinoma-a novel strategy for tumor-targeted therapy
Yanxia Gong, Jie Zhang, Xiang Wu, Tao Wang, Jia Zhao, Zhi Yao, Qingyu Zhang, Xi Liu, Xu Jian Oncol Lett. 2017 Oct;14(4):4158-4166. doi: 10.3892/ol.2017.6724. Epub 2017 Aug 4.
Proton-coupled oligopeptide transporter 1 (PEPT1) is a membrane protein which expressed predominantly in intestine and recognized as the target of dietary nutrients (di/tripeptide) or peptidomimetic drug for delivery. The information on the existence of PEPT1 in carcinomas were limited. Our study aimed to investigate the expression profile and transport activity of PEPT1 both in human hepatocarcinoma tissues and cell lines. Western blotting and an immunofluorescence assay revealed the high level of PEPT1 protein expression in hepatocarcinoma Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cell lines. Quantitative real time PCR showed the mRNA expression of PEPT1 in Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cells. High level PEPT1 expression in hepatocarcinoma patient samples were observed by Immunohistology and showed a significant correlation between protein level and pathological grade. Functional activities were also studied using D-Ala-Lys-AMCA (a substrate of peptide transporter) in above five hepatocarcinoma cell lines. The uptake tests performed by fluorescent microscopy suggested that PEPT1 can transport both D-Ala-Lys-AMCA into the hepatocarcinoma cells and the uptake can be competitively inhibited by three PEPT1 substrates (Gly-sar, Gly-gln and Glyglygly). In conclusion, our findings provided the novel information on the expression and function of PEPT1 in human hepatocarcinoma and expanded the potential values for tumor specific drug delivery.
2. Expression profile and functional activity of peptide transporters in prostate cancer cells
Wanyi Tai, Zhijin Chen, Kun Cheng Mol Pharm. 2013 Feb 4;10(2):477-87. doi: 10.1021/mp300364k. Epub 2012 Sep 21.
Peptide transporters are expressed predominantly in intestinal and renal epithelial cells. The functional expression of peptide transporters is also identified in other types of tissues, such as glia cells, macrophages, and the epithelia of the bile duct, the lungs, and the mammary glands. However, their presence and role are poorly understood in carcinomas. We explored the expression profile and functional activity of peptide transporters in the prostate cancer cell lines LNCaP, PC-3, and DU145. Quantitative real time RT-PCR (qRT-PCR) and Western blot were used to evaluate the expression profile of peptide transporter 1 (PEPT1), peptide transporter 2 (PEPT2), peptide histidine transporter 1 (PHT1), and peptide histidine transporter 2 (PHT2) in these cells. LNCaP expresses high levels of PEPT2 and PHT1, while PC-3 demonstrates strong expression of PEPT1 and PHT1. DU145 shows only weak expression of PEPT1 and PHT1. Functional activities were studied in these cell lines using radiolabeled glycylsarcosine ([(3)H]Gly-Sar) and l-histidine ([(3)H]-l-histidine). The uptake of [(3)H]Gly-Sar and [(3)H]-l-histidine was time- and pH-dependent. A kinetic study showed that the uptake of Gly-Sar and l-histidine is saturable over the tested concentration range. The binding affinity (K(m)) and the maximal velocity (V(max)) exhibited in the three cell lines were consistent with the expression profiles we observed in qRT-PCR and Western blot analysis. A competitive inhibition study revealed that peptide transporters in prostate cancer cells exhibited broad substrate specificity with a preference for hydrophobic dipeptides, such as Leu-Leu. Fluorescence microscopy study revealed that the fluorescent dipeptide probe d-Ala-Lys-AMCA (a substrate of peptide transporters) specifically accumulated in the cytoplasm of LNCaP and PC-3, but not DU145 cells. Inhibiting the peptide transporter activity by Gly-Sar suppressed the growth of LNCaP and PC-3 cells. Our study indicated that PC-3 cells can be established as a new cell culture model for PEPT1 study, and LNCaP can be used as a model for PEPT2 study. Moreover, our results suggested that peptide transporters are overexpressed in prostate cancer cells and can be adopted as a promising target for tumor-specific drug delivery.
3. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1
D A Groneberg, F Döring, P R Eynott, A Fischer, H Daniel Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G697-704. doi: 10.1152/ajpgi.2001.281.3.G697.
The nature of protein breakdown products and peptidomimetic drugs such as beta-lactams is crucial for their transmembrane transport across apical enterocyte membranes, which is accomplished by the pH-dependent high-capacity oligopeptide transporter PEPT1. To visualize oligopeptide transporter-mediated uptake of oligopeptides, an ex vivo assay using the fluorophore-conjugated dipeptide derivative D-Ala-Lys-N(epsilon)-7-amino-4-methylcoumarin-3-acetic acid (D-Ala-Lys-AMCA) was established in the murine small intestine and compared with immunohistochemistry for PEPT1 in murine and human small intestine. D-Ala-Lys-AMCA was accumulated by enterocytes throughout all segments of the murine small intestine, with decreasing intensity from the top to the base of the villi. Goblet cells did not show specific uptake. Inhibition studies revealed competitive inhibition by the beta-lactam cefadroxil, the angiotensin-converting enzyme inhibitor captopril, and the dipeptide glycyl-glutamine. Controls were performed using either the inhibitor diethylpyrocarbonate or an incubation temperature of 4 degrees C to exclude unspecific uptake. Immunohistochemistry for PEPT1 localized immunoreactivity to the enterocytes, with the highest intensity at the apical membrane. This is the first study that visualizes dipeptide transport across the mammalian intestine and indicates that uptake assays using D-Ala-Lys-AMCA might be useful for characterizing PEPT1-specific substrates or inhibitors.
Online Inquiry
Verification code
Inquiry Basket