D-allo-Threoninol
Need Assistance?
  • US & Canada:
    +
  • UK: +

D-allo-Threoninol

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Amino Alcohol
Catalog number
BAT-002604
CAS number
44520-54-9
Molecular Formula
C4H11NO2
Molecular Weight
105.10
D-allo-Threoninol
IUPAC Name
(2S,3R)-2-aminobutane-1,3-diol
Synonyms
D-allo-Thr-ol; (2S,3R)-2-Amino-1,3-butanediol; (2S,3R)-2-aminobutane-1,3-diol
Appearance
White powder
Purity
≥ 95% (NMR)
Storage
Store at 2-8 °C
InChI
InChI=1S/C4H11NO2/c1-3(7)4(5)2-6/h3-4,6-7H,2,5H2,1H3/t3-,4+/m1/s1
InChI Key
MUVQIIBPDFTEKM-DMTCNVIQSA-N
Canonical SMILES
CC(C(CO)N)O
1. Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: beta-peptides Ac-beta3-hPhe-beta3-hAla-NHMe and Ac-beta3-hAla-beta3-hPhe-NHMe
Esteban E Baquero, William H James 3rd, Soo Hyuk Choi, Samuel H Gellman, Timothy S Zwier J Am Chem Soc. 2008 Apr 9;130(14):4795-807. doi: 10.1021/ja078272q. Epub 2008 Mar 18.
The conformational preferences and infrared and ultraviolet spectral signatures of two model beta-peptides, Ac-beta3-hPhe-beta3-hAla-NHMe (1) and Ac-beta3-hAla-beta3-hPhe-NHMe (2), have been explored under jet-cooled, isolated-molecule conditions. The mass-resolved, resonant two-photon ionization spectra of the two molecules were recorded in the region of the S0-S1 origin of the phenyl substituents (37,200-37,800 cm(-1)). UV-UV hole-burning spectroscopy was used to determine the ultraviolet spectral signatures of five conformational isomers of both 1 and 2. Transitions due to two conformers (labeled A and B) dominate the R2PI spectra of each molecule, while the other three are minor conformers (C-E) with transitions a factor of 3-5 smaller. Resonant ion-dip infrared spectroscopy was used to obtain single-conformation infrared spectra in the 3300-3700 cm(-1) region. The infrared spectra showed patterns of NH stretch transitions characteristic of the number and type of intramolecular H-bonds present in the beta-peptide backbone. For comparison with experiment, full optimizations of low-lying minima of both molecules were carried out at DFT B3LYP/6-31+G*, followed by single point MP2/6-31+G* and selected MP2/aug-cc-pVDZ calculations at the DFT optimized geometries. Calculated harmonic vibrational frequencies and infrared intensities for the amide NH stretch vibrations were used to determine the beta-peptide backbone structures for nine of the ten observed conformers. Conformers 1B, 1D, and 2A were assigned to double ring structures containing two C6 H-bonded rings (C6a/C6a), conformers 1A and 2B are C10 single H-bonded rings, conformers 1C and 2D are double ring structures composed of two C8 H-bonded rings (C8/C8), and conformers 1E and 2E are double ring/double acceptor structures in which two NH groups H-bond to the same C=O group, thereby weakening both H-bonds. Both 1E and 2E are tentatively assigned to C6/C8 double ring/double acceptor structures, although C8/C12 structures cannot be ruled out unequivocally. Finally, no firm conformational assignment has been made for conformer 2C whose unusual infrared spectrum contains one very strong H-bond with NH stretch frequency at 3309 cm(-1), a second H-bonded NH stretch fundamental of more typical value (3399 cm(-1)), and a third fundamental at 3440 cm(-1), below that typical of a branched-chain free NH. The single conformation spectra provide characteristic wavenumber ranges for the amide NH stretch fundamentals ascribed to C6 (3378-3415 cm(-1)), C8 (3339-3369 cm(-1)), and C10 (3381-3390 cm(-1)) H-bonded rings.
2. Delicate balance of hydrogen bonding forces in D-threoninol
Vanesa Vaquero-Vara, Di Zhang, Brian C Dian, David W Pratt, Timothy S Zwier J Phys Chem A. 2014 Sep 4;118(35):7267-73. doi: 10.1021/jp410859n. Epub 2014 Jan 16.
The seven most stable conformers of D-threoninol (2(S)-amino-1,3(S)-butanediol), a template used for the synthesis of artificial nucleic acids, have been identified and characterized from their pure rotational transitions in the gas phase using chirped-pulse Fourier transform microwave spectroscopy. D-Threoninol is a close analogue of glycerol, differing by substitution of an NH2 group for OH on the C(β) carbon and by the presence of a terminal CH3 group that breaks the symmetry of the carbon framework. Of the seven observed structures, two are H-bonded cycles containing three H-bonds that differ in the direction of the H-bonds in the cycle. The other five are H-bonded chains containing OH···NH···OH H-bonds with different directions along the carbon framework and different dihedral angles along the chain. The two structural types (cycles and chains of H-bonds) are in surprisingly close energetic proximity. Comparison of the rotational constants with the calculated structures at the MP2/6-311++G(d,p) level of theory reveals systematic changes in the H-bond distances that reflect NH2 as a better H-bond acceptor and poorer donor, shrinking the H-bond distances by ~0.2 Å in the former case and lengthening them by a corresponding amount in the latter. Thus revealed is the subtle effect of asymmetric substitution on the energy landscape of a simple molecule, likely to be important in living systems.
3. Entropy-driven population distributions in a prototypical molecule with two flexible side chains: O-(2-acetamidoethyl)-N-acetyltyramine
V Alvin Shubert, et al. J Chem Phys. 2007 Dec 21;127(23):234315. doi: 10.1063/1.2803076.
Resonant two-photon ionization (R2PI), resonant ion-dip infrared (RIDIR), and UV-UV hole-burning spectroscopies have been employed to obtain conformation-specific infrared and ultraviolet spectra under supersonic expansion conditions for O-(2-acetamidoethyl)-N-acetyltyramine (OANAT), a doubly substituted aromatic in which amide-containing alkyl and alkoxy side chains are located in para positions on a phenyl ring. For comparison, three single-chain analogs were also studied: (i) N-phenethyl-acetamide (NPEA), (ii) N-(p-methoxyphenethyl-acetamide) (NMPEA), and (iii) N-(2-phenoxyethyl)-acetamide (NPOEA). Six conformations of OANAT have been resolved, with S(0)-S(1) origins ranging from 34,536 to 35,711 cm(-1), denoted A-F, respectively. RIDIR spectra show that conformers A-C each possess an intense, broadened amide NH stretch fundamental shifted below 3400 cm(-1), indicative of the presence of an interchain H bond, while conformers D-F have both amide NH stretch fundamentals in the 3480-3495 cm(-1) region, consistent with independent-chain structures with two free NH groups. NPEA has a single conformer with S(0)-S(1) origin at 37,618 cm(-1). NMPEA has three conformers, two that dominate the R2P1 spectrum, with origin transitions between 35,580 and 35,632 cm(-1). Four conformations, one dominate and three minor, of NPOEA have been resolved with origins between 35,654 and 36,423 cm(-1). To aid the making of conformational assignments, the geometries of low-lying structures of all four molecules have been optimized and the associated harmonic vibrational frequencies calculated using density functional theory (DFT) and RIMP2 methods. The S(0)-S(1) adiabatic excitation energies have been calculated using the RICC2 method and vertical excitation energies using single-point time-dependent DFT. The sensitivity of the S(0)-S(1) energy separation in OANAT and NPOEA primarily arises from different orientations of the chain attached to the phenoxy group. Using the results of the single-chain analogs, tentative assignments have been made for the observed conformers of OANAT. The RIMP2 calculations predict that interchain H-bonded conformers of OANAT are 25-30 kJ/mol more stable than the extended-chain structures. However, the free energies of the interchain H-bonded and extended structures calculated at the preexpansion temperature (450 K) differ by less than 10 kJ/mol, and the number of extended structures far outweighs the number of H-bonded conformers. This entropy-driven effect explains the presence of the independent-chain conformers in the expansion, and cautions future studies that rely solely on relative energies of conformers in considering possible assignments.
Online Inquiry
Verification code
Inquiry Basket