1.A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.
Prabaharan G1, Barik SP2, Kumar B1. Waste Manag. 2016 Apr 12. pii: S0956-053X(16)30173-8. doi: 10.1016/j.wasman.2016.04.010. [Epub ahead of print]
A hydrometallurgical process for recovering the total metal values from waste monolithic ceramic capacitors was investigated. The process parameters such as time, temperature, acid concentration, hydrogen peroxide concentration and other reagents (amount of zinc dust and sodium formate) were optimized. Base metals such as Ba, Ti, Sn, Cu and Ni are leached out in two stages using HCl in stage 1 and HCl with H2O2 in stage 2. More than 99% of leaching efficiency for base metals (Cu, Ni, Ba, Ti and Sn) was achieved. Precious metals such as Au and Pd are leached out using aquaregia and nitric acid was used for the leaching of Ag. Base metals (Ba, Ti, Sn, Cu and Ni) are recovered by selective precipitation using H2SO4 and NaOH solution. In case of precious metals, Au and Pd from the leach solution were precipitated out using sodium metabisulphite and sodium formate, respectively. Sodium chloride was used for the precipitation of Ag from leach solution.
2.A novel vortex-assisted liquid-liquid microextraction approach using auxiliary solvent: Determination of iodide in mineral water samples.
Zaruba S1, Vishnikin AB1, Andruch V2. Talanta. 2016 Mar 1;149:110-6. doi: 10.1016/j.talanta.2015.11.049. Epub 2015 Dec 1.
A novel vortex-assisted liquid-liquid microextraction (VA-LLME) for determination of iodide was developed. The method includes the oxidation of iodide with iodate in the presence of hydrochloric acid followed by VA-LLME of the ion-pair formed between ICl2(-) and Astra Phloxine reagent (AP) and subsequent absorbance measurement at 555nm. The appropriate experimental conditions were investigated and found to be: 5mL of sample, 0.27molL(-)(1) HCl, 0.027mmolL(-1) KIO3 as the oxidation agent, 250μL of extraction mixture containing amyl acetate as the extraction solvent and carbon tetrachloride as the auxiliary solvent (1:1, v/v), 0.04mmolL(-1) AP reagent, vortex time: 20s at 3000rpm, centrifugation: 4min at 3000rpm. The calibration plot was linear in the range 16.9-169μg L(-1) of iodide, with a correlation coefficient (R(2)) of 0.996, and the relative standard deviation ranged from 1.9 to 5.7%. The limit of detection (LOD) and limit of quantification (LOQ) were 1.
3.Determination of small halogenated carboxylic acid residues in drug substances by high performance liquid chromatography-diode array detection following derivatization with nitro-substituted phenylhydrazines.
Hou D1, Fan J2, Han L1, Ruan X1, Feng F3, Liu W4, Zheng F5. J Chromatogr A. 2016 Mar 18;1438:46-56. doi: 10.1016/j.chroma.2016.02.002. Epub 2016 Feb 3.
A method for the determination of small halogenated carboxylic acid (HCA) residues in drug substances is urgently needed because of the potential of HCAs for genotoxicity and carcinogenicity in humans. We have now developed a simple method, involving derivatization followed by high performance liquid chromatography-diode array detection (HPLC-DAD), for the determination of six likely residual HCAs (monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, 2-chloropropionic acid, 2-bromopropionic acid and 3-chloropropionic acid) in drug substances. Different nitro-substituted phenylhydrazines (NPHs) derivatization reagents were systematically compared and evaluated. 2-Nitrophenylhydrazine hydrochloride (2-NPH·HCl) was selected as the most suitable choice since its derivatives absorb strongly at 392nm, a region of the spectrum where most drug substances and impurities absorb very weakly. During the derivatization process, the commonly used catalyst, pyridine, caused rapid dechlorination or chlorine substitution of α-halogenated derivatives.
4.Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production.
Chavez E1, He ZL2, Stoffella PJ3, Mylavarapu RS4, Li YC5, Baligar VC6. Chemosphere. 2016 May;150:57-62. doi: 10.1016/j.chemosphere.2016.02.013. Epub 2016 Feb 15.
Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the chocolate consumption on human health. Accumulation of Cd in cacao bean in southern Ecuador has been related to soil contamination. In this study, soil fractionation approach was used to identify available Cd pools in the soils and to correlate these Cd pools with bean Cd concentration and soil test indexes. The distribution of soil Cd fractions decreased in the order: oxidizable > acid-soluble > residual > reducible >> water-soluble (+exchangeable). Oxidizable and acid-soluble fractions accounted for 59 and 68% of the total recoverable Cd for the 0-5 and 5-15 cm soil depth, respectively. Acid-soluble fraction was closely related to bean-Cd, with correlation coefficients (r) of 0.70 and 0.81 (P < 0.01) for the 0-5 and 5-15 cm soil depth, respectively. Acid-soluble Cd was significantly correlated with 0.01 M HCl- (r = 0.99, P < 0.